

A Level Mathematics A

H240/01 Pure Mathematics Sample Question Paper

Date - Morning/Afternoon

Time allowed: 2 hours

Version 2

· Printed Answer Booklet

You may use:

· a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer
 Booklet. Additional paper may be used if necessary but you must clearly show your candidate
 number, centre number and question number(s).
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION

- The total number of marks for this paper is 100.
- The marks for each question are shown in brackets [].
- You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of 16 pages. The Question Paper consists of 8 pages.

2

Formulae A Level Mathematics A (H240)

Arithmetic series

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n\{2a+(n-1)d\}$$

Geometric series

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r} \quad \text{for } |r| < 1$$

Binomial series

$$(a+b)^{n} = a^{n} + {}^{n}C_{1} a^{n-1}b + {}^{n}C_{2} a^{n-2}b^{2} + \dots + {}^{n}C_{r} a^{n-r}b^{r} + \dots + b^{n} \qquad (n \in \mathbb{N}),$$
where ${}^{n}C_{r} = {}_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^{r} + \dots \qquad (|x| < 1, n \in \mathbb{R})$$

Differentiation

f(x)

tan kx	$k \sec^2 kx$
sec x	sec x tan x
cotx	$-\csc^2 x$
cosec x	$-\csc x \cot x$

Quotient rule
$$y = \frac{u}{v}$$
, $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Integration

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$

$$\int f'(x) (f(x))^n dx = \frac{1}{n+1} (f(x))^{n+1} + c$$

Integration by parts
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Small angle approximations

 $\sin \theta \approx \theta, \cos \theta \approx 1 - \frac{1}{2}\theta^2, \tan \theta \approx \theta$ where θ is measured in radians

© OCR 2018 H240/01

3

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

Numerical methods

Trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B \mid A) = P(B)P(A \mid B)$$
 or $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Standard deviation

$$\sqrt{\frac{\Sigma(x-\overline{x})^2}{n}} = \sqrt{\frac{\Sigma x^2}{n} - \overline{x}^2} \text{ or } \sqrt{\frac{\Sigma f(x-\overline{x})^2}{\Sigma f}} = \sqrt{\frac{\Sigma f x^2}{\Sigma f} - \overline{x}^2}$$

The binomial distribution

If
$$X \sim B(n, p)$$
 then $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$, mean of X is np , variance of X is $np(1-p)$

Hypothesis test for the mean of a normal distribution

If
$$X \sim N(\mu, \sigma^2)$$
 then $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ and $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

Percentage points of the normal distribution

If Z has a normal distribution with mean 0 and variance 1 then, for each value of p, the table gives the value of z such that $P(Z \le z) = p$.

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
Z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Kinematics

Motion in a straight line	Motion in two dimensions
v = u + at	$\mathbf{v} = \mathbf{u} + \mathbf{a}t$
$s = ut + \frac{1}{2}at^2$	$\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$
$s = \frac{1}{2}(u+v)t$	$\mathbf{s} = \frac{1}{2} (\mathbf{u} + \mathbf{v}) t$
$v^2 = u^2 + 2as$	
$s = vt - \frac{1}{2}at^2$	$\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$

4

Answer all the questions

1 Solve the simultaneous equations.

$$x^{2} + 8x + y^{2} = 84$$

$$x - y = 10$$
[4]

1	$3x^2 + 8x + y^2 = 84$ 0 3x - y = 10 2
	Sub @ into 0:
	$x^{2} + 8x + (x - 10)^{2} = 84$ $x^{2} + 8x + x^{2} - 20x + 100 = 84$
	$2x^{2} - 12x + 16 = 0$ $x^{2} - 6x + 8 = 0$ $(x - 4)(x - 2) = 0$
	x = 2 or x = 4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	So either $x = 2$, $y = -8$ or $x = 4$, $y = -6$

- The points A, B and C have position vectors $3\mathbf{i} 4\mathbf{j} + 2\mathbf{k}$, $-\mathbf{i} + 6\mathbf{k}$ and $7\mathbf{i} 4\mathbf{j} 2\mathbf{k}$ respectively. M is the midpoint of BC.
 - (a) Show that the magnitude of \overrightarrow{OM} is equal to $\sqrt{17}$.

Point D is such that $\overrightarrow{BC} = \overrightarrow{AD}$.

(b) Show that position vector of the point D is 11i-8j-6k. [3]

b)
$$\vec{BC} = \vec{OC} - \vec{OB} = 7_1 - 4_2 - 2_1 + 1_2 - 6$$

3 The diagram below shows the graph of y = f(x).

- (a) On the diagram in the Printed Answer Booklet, draw the graph of $y = f(\frac{1}{2}x)$. [1]
- (b) On the diagram in the Printed Answer Booklet, draw the graph of y = f(x-2)+1. [2]

4 The diagram shows a sector AOB of a circle with centre O and radius r cm.

The angle AOB is θ radians. The arc length AB is 15 cm and the area of the sector is 45 cm².

(a) Find the values of r and θ .

[4]

(b) Find the area of the segment bounded by the arc AB and the chord AB.

[3]

(a)	Area length = r0	Area = 250	
	15 = 10	45 = 2120	
	10	90 = 520	

90 = 1(10)				
90 = r x 15				,
1 = 6	⇒ 0 =	15	= 2	.5
		6		_

5 In this question you must show detailed reasoning.

Use logarithms to solve the equation $3^{2x+1} = 4^{100}$, giving your answer correct to 3 significant figures.

[4]

5.	3 - 4 100)	Take	log3	ot	both si
	$2x + 1 = \log_3(4^{100})$			0	'	
	2x+1 = 100 logs 4					
	2x + 1 = 126.186					
	2x = 125.186					
	x = 62.59					

6 Prove by contradiction that there is no greatest even positive integer.

6.	Assume	there	exists	a	greatest	even 76	positive
	Dosinve	integer	,,,,	Let	10 -	LK	
	N+2	= 2k	+ 2 -	2(1	e + 1)		
+	2 (k+1)	ú	ever.				
	S. N			d :	t is	even	so we
	have	found	α	contrad	iction		
_	1	· ·			١ ١	,	ive integer

[3]

7	Business A	A made a	£5000	profit	during	its	first	vear
,	Dusiness 1	i maac a	25000	prom	during	165	IIISt	y car.

In each subsequent year, the profit increased by £1500 so that the profit was £6500 during the second year, £8000 during the third year and so on.

Business B made a £5000 profit during its first year.

In each subsequent year, the profit was 90% of the previous year's profit.

(a) Find an expression for the total profit made by business A during the first *n* years. Give your answer in its simplest form.

[2]

(b) Find an expression for the total profit made by business B during the first *n* years. Give your answer in its simplest form.

[3]

(c) Find how many years it will take for the total profit of business A to reach £385 000.

[3]

(d) Comment on the profits made by each business in the long term.

[2]

ta)	The profit of A forms an arithmetic
+-	series with a = 5000 and d = 1500
	Sum = = (2a + (n-1)d)
	= = (2(5000) + (1-1)(1500))
	- n (5000 + 750n - 750)
	= n (750n + 4250)
b)	This is a geometric series with a = 5000
	and 1 = 0.9
-	and 1° 0.1
	and $l = 0.1$ Sum = $a(l - r^{*})$ $l - r$
	Sum = a(1-r^) 1-r
	$Sum = \frac{a(1-r^2)}{1-r}$ $Sum = \frac{5000(1-0.9^2)}{1-r}$
	$Sum = \frac{a(1-r^2)}{1-r}$ $Sum = \frac{5000(1-0.9^2)}{1-r}$

c) 385000 = 1	(750n + 425	0)			
	0, - 385000				
3,2 + 17,	- 1540 =	0			
n = -17 ±) 172 - (4)(3)(-	1540)			
	2 × 3				
n = -17 ±	18 769				
6					
n = -17 ± 137	<u> </u>				
n = -77 3	or n= 20				
3			_		
Hence it w	11 take 20	year	5		
d) Business A Business B's and smaller, will plateau	aill continue	to m	ake pr	otit.	
Business B's	profib each	year	c11	get	small
and smaller,	and evertually	the	total	buot	+
will plateau	at 5008	O as		gets	large
(because 0.	9° tends to	Zero)		J	9

8 (a) Show that
$$\frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin 2\theta.$$
 [3]

(b) In this question you must show detailed reasoning.

Solve
$$\frac{2 \tan \theta}{1 + \tan^2 \theta} = 3 \cos 2\theta$$
 for $0 \le \theta \le \pi$. [3]

a) 2tar0 - 5:20 1 + tar20	
1 + Tan O	
1 11c 2 Sin C	
LHS = 2 - 5:00 1 + 5:00 (0010	1
1 7 60,16) x cos 2 θ
= 2sin 0 cos 0	
Cos20 + 5220	
	(05° 0 + 5 10° 20 = 1
= 2cos 0 s.h 0	
1	
= sin 20 = RHS	
3,420	
b) 2tan0 = 3cos 20	
1 + tan 20	
sin 20 = 3cos 20	
tan 20 = 3	
20 = ta, (3)	
0 = \frac{1}{2} \tan - 1 (3)	
0 = 0.625 or 0 = 0.6	525 + [#] 2
$\theta = 0.625$ or $\theta = 0.6$	
0 . 2.	113

- 9 The equation $x^3 x^2 5x + 10 = 0$ has exactly one real root α .
 - (a) Show that the Newton-Raphson iterative formula for finding this root can be written as

$$x_{n+1} = \frac{2x_n^3 - x_n^2 - 10}{3x_n^2 - 2x_n - 5}.$$
 [3]

- (b) Apply the iterative formula in part (a) with initial value $x_1 = -3$ to find x_2, x_3, x_4 correct to 4 significant figures. [1]
- (c) Use a change of sign method to show that $\alpha = -2.533$ is correct to 4 significant figures. [3]
- (d) Explain why the Newton-Raphson method with initial value $x_1 = -1$ would not converge to α .

[2]

9 a	let $f(x) = x^3 - x^2 - 5x + 10$ then $f'(x) = 3x^2 - 2x - 5$
	$x_{n+1} = x_n - x_n^3 - x_n^2 - 5x_n + 10$
-	$3x_1^2 - 2x_2 - 5$
+	$x_{n+1} = 3x_n^3 - 2x_n^3 - 5x_n - x_n^3 + x_n^2 + 5x_n - 10$ $3x_n^2 - 2x_n - 5$
+	$3x_{1}-2x_{2}-5$
	$x_{n+1} = 2x_n^3 - x_n^2 - 10$
+	$3x_{1}^{1} - 2x_{2} - 5$
Ь	y,3
-	x2 = -2.607
+	$x_1 = -2.535$
	$x_4 = -2.533$

c)	$f(-2.5325) = (-2.5325)^3 - (-2.5325)^2 - 5(-2.5325) + 10$
	= O. 0066125
	$F(-2.5335) = (-2.5335)^3 - (-2.5335)^2 - 5(-2.5335) + 10$
	= -0.0177017
	Change of sign indicates root Hence $d = -2.533$ is correct to 4.5.f
٩)	f'(-1) = 3(-1) - 2(-1) - 5 = 3 + 2 - 5

The denominator of the fraction would be zero

so it is undefined

- 10 A curve has equation $x = (y+5)\ln(2y-7)$.
 - (a) Find $\frac{dx}{dy}$ in terms of y.

[3]

(b) Find the gradient of the curve where it crosses the y-axis.

[5]

10a)	x = (y + 5) 1, (2y - 7)
	let v = y + 5, then du = 1
	v = 1, (2y - 7), then du = 2 dy 2y - 7
	$\frac{dx}{dy} = \frac{dv}{dy} + \frac{dv}{dy} = \frac{l_0(2y-7) + 2(y+5)}{2y-7}$
Ь) Crosses the y axis when $x = 0$. $0 = (y + 5) \ln (2y - 7)$
	y + 5 = 0 $y = -5$ $2y - 7 = 1$ $2y = 8$ $y = 4$
	y = -5 is not a solution since when you sub it into the equation for dx you get

when	y = 4,	dx =	1, (8-7) +	2(4+5)
	0	dy		8 - 7
		dx =	1,1 + 18	
		dy		
		dx =	18	
		dy	18	
<i>:</i> .	<u>dy</u> =	1		

11	For all real values of x, the functions f and g are defined by $f(x) = x^2 + 8ax + 4a^2$ and
	g(x) = 6x - 2a, where a is a positive constant.

(a) Find fg(x).Determine the range of fg(x) in terms of a.

[4]

(b) If
$$fg(2) = 144$$
, find the value of *a*.

[3]

[2]

11 a	$\int f_g(x) = \int (6x - 2a)$
	$= (6x - 2a)^2 + 8u(6x - 2a) + 4a^2$
	$= 36x^2 - 24ax + 4a^2 + 48ax - 16a^2 + 4a^2$
	$= 36x^2 + 24ax - 8a^2$
	To find the range we need to find the
	Devices of the state of the sta
	maximum or minimum value of fg (x)
+	One cray to do this is by completing the
-	Square
	$f_g(x) = 4(9x^2 + 6ax - 2a^2)$
	= 36 (x + \frac{2}{3}ax - \frac{2}{9}a^2)
	= 36 ((x+ 1/a) - 1/a - 2/a 2)
	$= 36 \left(\left(x + \frac{1}{3} a \right)^2 - \frac{1}{3} a^2 \right)$
	$= 36 (x + \frac{1}{2}a)^{2} - 12a^{2}$

	$f_{g}(x) \geqslant -12a^{2}$
s)	$f_{g}(2) = 36(2)^{2} + 24(2)a - 8a^{2}$ $144 = 144 + 48a - 8a^{2}$ $0 = 8a(6 - a)$
	a is positive so cannot equal zero. Therefore a = 6
c)	The function is one-to-many so each y value (apart from y=-12a2) corresponds to two different x values

12	The parametric e	equations of a cur	ve are given by x	$c = 2\cos\theta$ and	$v = 3\sin\theta$ for 0	$\leq \theta < 2\pi$.

(a) Find
$$\frac{dy}{dx}$$
 in terms of θ . [2]

The tangents to the curve at the points P and Q pass through the point (2, 6).

(b) Show that the values of
$$\theta$$
 at the points P and Q satisfy the equation $2\sin\theta + \cos\theta = 1$. [4]

(c) Find the values of
$$\theta$$
 at the points P and Q . [5]

12. a)
$$x = 2\cos\theta$$
 $y = 3\sin\theta$

$$\frac{dx}{d\theta} = -2\sin\theta$$

$$\frac{dy}{d\theta} = 3\cos\theta$$

$$\frac{dy}{dx} = \frac{dy}{d\theta} = \frac{dx}{d\theta} = \frac{3\cos\theta}{-2\sin\theta} = -\frac{3\cos\theta}{2\sin\theta}$$

$$\frac{2y \sin \theta - 6\sin^2 \theta = -7x \cos \theta + 6\cos^2 \theta}{2y \sin \theta + 3x \cos \theta = 6(\cos^2 \theta + \sin^2 \theta)}$$

$$\frac{2y \sin \theta + 3x \cos \theta = 6(\cos^2 \theta + \sin^2 \theta)}{2y \sin \theta + 3x \cos \theta = 6}$$

(Je	know	ił	passes	through	(2,6)	So	sub
	these	values	ì	, '	0			

$$2(6)\sin\theta + 3(2)\cos\theta = 6$$

$$12\sin\theta + 6\cos\theta = 6$$

$$2\sin\theta + \cos\theta = 1$$

د)	So we want to solve the equation
	$2sin \Theta + cos \Theta = 1$
	Do this by turning the LMS into a singl
	trig function
	•
	$2\sin\theta + \cos\theta = R\sin(\theta + \alpha)$
	2 sin 0 + cos 0 = Rsin 0 cos x + Rsin x cos 0
	0 P P.
	2 = Rcos a 1 = Rsin a
	Ru - 1
	Rosa = 1
	tand = 1 = 0.4636
	$\tan \alpha = 1 \Rightarrow \alpha = 0.4636$
	tan x = 1/2 Js
	$\tan \alpha = \frac{1}{2}$
	<u></u>
	So Sin of = 1
	J5
	R = 1 = J5
	Sink —
	3/4 A
	So 250 0 + cos 0 = J5 sin (0+ 0.4636)
	$1 = \int_{5}^{25} s_{12} \left(0 + 0.4636\right)$
	s (A + M4676) = 1
	sin (0 + 0.4676) = 1 Js
	0 + 0 4(2(1 / .)
	$\theta + 0.4636 = s_{h}^{-1} \left(\frac{1}{J_{s}}\right)$
	,
	0 + 0.4636 = 0.4636
	Ø = O

13 In this question you must show detailed reasoning.

Find the exact values of the x-coordinates of the stationary points of the curve $x^3 + y^3 = 3xy + 35$.

[9]

13.	$x^3 + y^3 = 3xy + 35$
	Differentiate implicity
	$3x^2 + 3y^2 \frac{dy}{dx} = 3x \frac{dy}{dx} + 3y$
	At the stationary points dy = 0
	$3x^{2} + 3y^{2}(0) = 3x(0) + 3y$ $3x^{2} = 3y$ $3x^{2} = y$
	Sub this into the original equation to find an equation in terms of >c
+	$x^3 + (x^2)^3 = 3x(x^2) + 35$ $x^3 + x^6 = 2x^3 + 35$
	$x^6 - 2x^3 - 35 = 0$
-	$(x^3 + 5)(x^3 - 7)$
_	
	$x^{3} = -35$ or $x^{3} = 7$ x = -35 $x = 37$

14 John wants to encourage more birds to come into the park near his house.

Each day, starting on day 1, he puts bird food out and then observes the birds for one hour. He records the maximum number of birds that he observes at any given moment in the park each day.

He believes that his observations may be modelled by the following differential equation, where n is the maximum number of birds that he observed at any given moment on day t.

$$\frac{\mathrm{d}n}{\mathrm{d}t} = 0.1n \left(1 - \frac{n}{50} \right)$$

- (a) Show that the general solution to the differential equation can be written in the form $n = \frac{50A}{e^{-0.1t} + A}, \text{ where } A \text{ is an arbitrary positive constant.}$ [9]
- (b) Using his model, determine the maximum number of birds that John would expect to observe at any given moment in the long term. [1]
- (c) Write down one possible refinement of this model. [1]
- (d) Write down one way in which John's model is not appropriate. [1]

END OF QUESTION PAPER

				179
14	- do = 0.	$\frac{\left(\frac{50}{50} - \frac{2}{50}\right)}{\left(\frac{50}{50} - \frac{2}{50}\right)}$		
	do = 0.1	(50, -,2)		
	dl-	(50)		
_	50 d.	= 0.1 dt		
-	50n - n2			
	let 50	- A +	R	
	50, - ,2	- <u>A</u> +	50 - 2	
		A (. 0	
	50	= A (50-1)	+ 1/2	
	50 - 50 A			
-	A = 1			
1	0 = - A +	P		
	0 = -1 +			
	B = 1			
-	٢ ٢٥			
	50, -	2 1	50-1	

P)	As So	$\frac{e^{-0.1t}}{e^{-0.1t}} \rightarrow 0$ $\frac{50A}{e^{-0.1t}} \rightarrow \frac{50A}{0+A} = \frac{50}{0+A}$
	John	would expect to see 50 birds in t
c)	Oaly	allow integer values for t
d)	The	model is continuous not discrete.