

GCE

Further Mathematics B (MEI)

Y432/01: Statistics minor

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Y432/01 Mark Scheme October 2021

Annotations and abbreviations

Annotation in scoris	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0,M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Ç	uestio	n	Answer	Marks	AOs	S Guidance	
1	(a)		k + 2k + 5k + 10k + 17k = 1	M1	2.4		
			$35k = 1$ so $k = \frac{1}{35}$	A1	1.1	AG	
			33	[2]			
1	(b)		The distribution has (strong) negative skew	B1	1.1		
				[1]			
1	(c)		$E(X) = 4\frac{1}{7} = \frac{29}{7} = 4.143$	B1	1.1a	BC Accept any equivalent form.	
			$\begin{bmatrix} E(X) - 17 - 7 \\ 7 \end{bmatrix}$				Decimal answers
							should agree to at least
			23 268	B1	1.1	BC A good ony aguivalant form	2 significant figures.
			$Var(X) = 1\frac{23}{245} = \frac{268}{245} = 1.094$	D1	1.1	BC Accept any equivalent form.	
			243 243	[2]			
1	(d)		5 75	B1FT	1.1	BC Accept any equivalent form.	
	,		$E(Y) = 10\frac{5}{7} = \frac{75}{7} = 10.714$			FT their E(X) from (c)	Decimal answers
			, ,				should agree to at least
							2 significant figures.
			$Var(Y) = 27\frac{17}{49} = \frac{1340}{49} = 27.347$	B1FT	1.1	BC Accept any equivalent form.	
			$\begin{bmatrix} v^{(1)} & 2 & 49 & 49 & -27.347 \end{bmatrix}$			FT their Var(X) from (c)	
				[2]			

PMT

Q	uestio	n	Answer	Marks	AOs	Guidance	
2	(a)		<i>a</i> is the independent variable since the values of <i>a</i> are not subject to random variation	B1	2.4	B1 : values of <i>a</i> are controlled B0 : <i>d</i> is dependent on <i>a</i>	Explanation required
				[1]			
2	(b)		d = -1.104a + 197.1	M1	3.3	For either $-1.104(a)$ or 197.1	y = -1.104x + 197.1
				A1	1.1	BC	scores M1 A0
				[2]			
2	(c)		estimate = 130.9 (m)	B1FT	1.1	FT from (b) if the value is plausible	Accept 130 as rounded
			ostimute 15015 (m)		101	from the scatter diagram.	to 2 significant figures.
				[1]		aram und sounder unugrunn	
2	(d)		Because this would be extrapolation and it is possible	B1	2.2b	For 'extrapolation'	B0 for comment about
			that the relationship is different for young children	B 1	2.4	B1: a 5-year-old child may not be able	child not being able to
						to read yet	drive
				[2]			
2	(e)		Residual = $150 - (-1.104 \times 40 + 197.1)$	M1	1.1	Subtraction other way around scores	
						M1 only	
			=-3.0	A1FT	1.1	Allow –2.9 (using 1.104 and 197.1)	
						FT from (b)	
				[2]			
2	(f)		Because the values of a are non-random so it makes no	B1	3.2b	Should show understanding of a	
			sense to try to predict them.			purpose of a regression line being to	
				[1]		make predictions.	

PMT

	uestio	m	Answer	Marks	AOs	Guidance	
3	(a)	,11 	The sample must be random	B1	1.2	Guidance	
3	(a)		The sample must be random	[1]	1.2		
3	(b)		E8: $\frac{23 \times 29}{120} = 5.5583$	B1	1.1		
			C13: $\frac{(28-33.1417)^2}{33.1417}$	M1	1.1a		
			=0.7977	A1	1.1		
				[3]			
3	(c)		H ₀ : No association between age and smoking (status) H ₁ : Some association between age & smoking (status)	B1	3.4	Both hypotheses needed Use of 'correlation' in place of 'association' is B0	
			Degrees of freedom = 2	B 1	3.3		
			Critical value = 5.991	B1	1.1	or χ_2^2 (6.4801) = 0.9608 or p-value = 0.0392	
			Test statistic = $3.3642 + 0.6964 + + 0.2792 = 6.4801$	B1FT	1.1	FT their value of C13	
			6.4801 > 5.991	M1	2.2b	or 0.9608 > 0.95 or 0.0392 < 0.05	Comparing their test and critical values leading to a conclusion.
			There is sufficient evidence at the 5% level to suggest that there is association between age and smoking (status)	A1 [6]	3.5a	Correct test and critical values required Use of 'correlation' in place of 'association' is A0	Conclusion in context
3	(d)		For 16-34 year olds the contribution of 3.3642 suggests	E1	2.3	Max of 2 marks out of 3 if no	Should take each age
	(4)		that more are smokers than would be expected.		2.0	contributions are mentioned.	group in turn and discuss status
			For 35-59 year olds things are (approximately) as expected if there were no association.	E 1	3.5a	Allow equivalent statements about non-smokers	Max 2 marks if done differently
			For people aged 60 and over the contribution of 1.1775 suggests that fewer are smokers than would be	E1	3.2a		
			expected.	[3]			

PMT

	Question		Answer	Marks	AOs	Guidance	
4	(a)	<u> </u>	Because (the grouping of points on) the scatter	E1	3.5a	For elliptical	
"	(a)		diagram appears to be very roughly elliptical,	151	J.Ja	1 of emptical	
			the distribution may be bivariate Normal.	E 1	2.4	For full answer (dep. on first mark)	
			The distribution may be or written in the initial in the initial in the initial initia	[2]		"the data is bivariate Normal" is E0	
4	(b)		$S_{xy} = 12317.2 - \frac{1}{10} \times 351.9 \times 350.0 = 0.7$	M1	1.1a		Detailed reasoning
	()		$S_{xy} = 12317.2 - \frac{10}{10} \times 331.9 \times 330.0 - 0.7$	1,122			required.
			$S_{xx} = 12384.5 - \frac{1}{10} \times 351.9^2 = 1.139$	M1	1.1	For either S_{xx} or S_{yy}	•
			10 ~331.5			,,,,	
			$S_{yy} = 12251.2 - \frac{1}{10} \times 350.0^2 = 1.2$				
			10				
			$S_{xy} = 0.7$	M1	3.3	For general form including square root	
			$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{0.7}{\sqrt{1.139 \times 1.2}}$				
			= 0.60	A1	1.1	SC2 for correct value without any	(0.598750)
			- 0.00	[4]	1.1	intermediate calculations	(0.0000700111)
4	(c)		H_0 : $\rho = 0$	B1	3.3	For both hypotheses	H_0 : no correlation in
"	(C)		$H_1: \rho > 0$	D1	3.3	1 of both hypotheses	the population
			where ρ is the population product moment correlation	B1	2.5	For defining ρ	H ₁ : positive
			coefficient between x and y				correlation in the
							population
			For $n = 10$, 5% critical value (one tailed) = 0.5494	B1	3.4	For critical value	scores first B1
			, , ,				
			Since $0.60 > 0.5494$ the result is significant.	M1	1.1	For comparison of test statistic and	
				AIRT	2.24	critical value leading to a conclusion FT for conclusion in context	
			There is sufficient evidence (at the 5% level) to suggest that there is positive correlation between	A1FT	2.2b	F1 for conclusion in context	
			directly measured and satellite measured salinity level.	[5]			
4	(d)		It means that one can be more confident that the	E 1	2.4		
	()		correlation is genuine, rather than simply the result of	[1]			
			random variation.				
4	(e)		The test shows that there is almost certainly some real	E 1	3.5a		
			correlation in the population.				
			However, it is uninformative/of little use since the	E 1	2.2b		
			effect size is so small.	[2]			

Y432/01 Mark Scheme October 2021

Q	Question		Answer	Marks	AOs	Guidance
5	(a)	(i)	$P(X \ge 10) = 1 - 0.9161$	M1	3.1b	Or $P(X \ge 10) = 1 - P(X \le 9)$
			= 0.0839	A1 [2]	1.1	BC (0.083924)
5	(a)	(ii)	Poisson (60)	M1	3.3	soi
			P(X < 50) = 0.0844	A1	1.1	BC (0.084406)
				[2]		
5	(b)		0.9161^{20}	M1	3.1a	soi
			=0.1733	A1FT	1.1	or 0.1732 from calculator value in (a)
				[2]		
5	(c)		Use of $Var(X) = E(X)$	M1	3.1b	
			$Var(X) = E(X^2) - (E(X))^2 \mu = 12 - \mu^2$	M1	2.2a	For equation
			$\mu = 3$	A1	1.1	
			P(X < 5) = 0.8153	A1	1.1	BC (0.815263)
				[4]		

Y432/01 Mark Scheme October 2021

Ç	Question		Answer	Marks	AOs	Guidance	
6	(a)	(i)	Uniform distribution on $\{1, 2,, n\}$ $P(X \le \frac{1}{4}n) = \frac{1}{4}$	B1	3.3		
			$(A = 4^n) = 4$	[1]			
6	(a)	(ii)	$P(X \le \frac{1}{4}n) = \frac{k}{4k+1}$	M1	2.2a		
			$=\frac{\frac{1}{4}(n-1)}{n}$	M1	1.1		
			$=\frac{n-1}{4n}$	A1	1.1		Single fraction required for A1
				[3]			
6	(b)		E(X) = 51 Var(X) = 850	M1	3.1b	For either	
			SD(X) = 29.1 So require $P(21.9 < X < 80.1)$	M1	1.1a	For required interval	
			$P(22 \le X \le 80) = \frac{59}{101}$	A1 [3]	1.1		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

