

...day June 20XX - Morning/Afternoon

A Level Further Mathematics B (MEI) Y422 Statistics Major

**SAMPLE MARK SCHEME** 

**Duration:** 2 hours 15 minutes

# MAXIMUM MARK 120



# **Text Instructions**

# 1. Annotations and abbreviations

| Annotation in scoris   | Meaning                                                     |
|------------------------|-------------------------------------------------------------|
| √and <b>x</b>          |                                                             |
| BOD                    | Benefit of doubt                                            |
| FT                     | Follow through                                              |
| ISW                    | Ignore subsequent working                                   |
| M0, M1                 | Method mark awarded 0, 1                                    |
| A0, A1                 | Accuracy mark awarded 0, 1                                  |
| B0, B1                 | Independent mark awarded 0, 1                               |
| SC                     | Special case                                                |
| ۸                      | Omission sign                                               |
| MR                     | Misread                                                     |
| Highlighting           |                                                             |
|                        |                                                             |
| Other abbreviations in | Meaning                                                     |
| mark scheme            |                                                             |
| E1                     | Mark for explaining a result or establishing a given result |
| dep*                   | Mark dependent on a previous mark, indicated by *           |
| cao                    | Correct answer only                                         |
| oe                     | Or equivalent                                               |
| rot                    | Rounded or truncated                                        |
| soi                    | Seen or implied                                             |
| www                    | Without wrong working                                       |
|                        |                                                             |
| AG                     | Answer given                                                |
| awrt                   | Answer given Anything which rounds to                       |
|                        |                                                             |

## 2. Subject-specific Marking Instructions for A Level Further Mathematics B (MEI)

- Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

  If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

#### М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

## Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

### В

Mark for a correct result or statement independent of Method marks.

### Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep\*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

  Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.
- k Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned on this occasion, but shows what a complete solution might look like

|   | Questio | n | Answer                                                                                                      | Marks     | AOs | Guidance                                                         |
|---|---------|---|-------------------------------------------------------------------------------------------------------------|-----------|-----|------------------------------------------------------------------|
| 1 | (i)     |   | $\frac{2}{9}$                                                                                               | B1        | 1.1 |                                                                  |
|   |         |   | 9                                                                                                           | [1]       |     |                                                                  |
| 1 | (ii)    |   | r 3 4 5 6                                                                                                   | B1        | 1.1 |                                                                  |
|   |         |   | $P(X=r) \qquad \frac{2}{9} \qquad \frac{31}{81}$                                                            |           |     |                                                                  |
|   |         |   |                                                                                                             | [1]       |     |                                                                  |
| 1 | (iii)   |   | DR                                                                                                          |           |     |                                                                  |
|   |         |   | $E(X) = 3 \times \frac{2}{9} + 4 \times \frac{2}{9} + 5 \times \frac{14}{81} + 6 \times \frac{31}{81}$      | M1        | 1.2 | For $\Sigma rp$ (at least 3 terms correct)<br>FT their part (ii) |
|   |         |   |                                                                                                             |           |     |                                                                  |
|   |         |   | $=\frac{382}{81}=4.716$                                                                                     | <b>A1</b> | 1.1 | cao                                                              |
|   |         |   |                                                                                                             |           |     |                                                                  |
|   |         |   | $E(X^2) = 9 \times \frac{2}{9} + 16 \times \frac{2}{9} + 25 \times \frac{14}{81} + 36 \times \frac{31}{81}$ | M1        | 1.1 | For $\sum r^2 p$ (at least 3 terms                               |
|   |         |   |                                                                                                             |           |     | correct)                                                         |
|   |         |   | $=\frac{1916}{81}=23.564$                                                                                   |           |     |                                                                  |
|   |         |   | $V \operatorname{ar}(X) = \frac{1916}{81} - \left(\frac{382}{81}\right)^2$                                  | M1        | 1.1 | M1dep for – their E( $X$ ) <sup>2</sup>                          |
|   |         |   | =1.413                                                                                                      | A1        | 1.1 | A1 FT their E(X) provided                                        |
|   |         |   |                                                                                                             |           |     | Var(X) > 0                                                       |
|   |         |   |                                                                                                             | [5]       |     |                                                                  |

|   | Questio | on         | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks | AOs  | Guidance                            |
|---|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------------------------------------|
| 2 | (i)     | (A)        | ĵy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1    | 1.1  | Shape of each part separately,      |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | domain correct                      |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |                                     |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1    | 1.1  | All correct, including y-           |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | intercept, which may be labelled    |
|   |         |            | -1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | $a \text{ or } \frac{1}{3}$         |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |                                     |
|   |         |            | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [2]   |      |                                     |
| 2 | (i)     | <b>(B)</b> | Total area = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1    | 1.2  | Use of this principle somewhere     |
| _ | (1)     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | in solution                         |
|   |         |            | Area = $a + \int_0^1 (a + x^2) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1    | 2.1  | Attempt at two (or more) areas      |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | including a correct integral        |
|   |         |            | So $2a + \frac{1}{3} = 1 \implies a = \frac{1}{3}$ AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1    | 2.2a |                                     |
|   |         |            | $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |                                     |
|   | (44)    | (4)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [3]   |      |                                     |
| 2 | (ii)    | (A)        | $\frac{1}{3} + \int_0^{\frac{1}{2}} \left(\frac{1}{3} + x^2\right) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1    | 1.1a | Attempt to find area from –1 to     |
|   |         |            | $\begin{bmatrix} 3 & J_0 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      | $\frac{1}{2}$                       |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1   |      | Must be seen                        |
|   |         |            | $=\frac{13}{24}=0.5417$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1    | 1.1  | BC As fraction, or given correct to |
|   |         |            | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      | 3 or 4 d.p.                         |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [2]   |      | 5 52 T <b>G.</b> p.                 |
|   |         | (B)        | $E(X) = \int_{-1}^{0} \frac{1}{3}x dx + \int_{0}^{1} \left(\frac{1}{3}x + x^{3}\right) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1    | 1.1a | Must be seen                        |
|   |         |            | $\int_{-1}^{1} \int_{-1}^{1} \int_{3}^{1} \int_$ |       |      |                                     |
|   |         |            | =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1    | 1.1  | BC                                  |
|   |         |            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 563   |      |                                     |
|   |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [2]   |      |                                     |

|   | Questio | on  | Answer                                                                                                                    | Marks      | AOs  | Guidance                          |
|---|---------|-----|---------------------------------------------------------------------------------------------------------------------------|------------|------|-----------------------------------|
| 2 | (iii)   |     | area from $-1$ to 0 is $\frac{1}{3}$ , so require                                                                         |            |      |                                   |
|   |         |     | $\int_0^m \left(\frac{1}{3} + x^2\right) \mathrm{d}x = \frac{1}{6}$                                                       | E1         | 2.1  |                                   |
|   |         |     | $\int_0^m \left(\frac{1}{3} + x^2\right) dx = \frac{1}{6}$ $\left[\frac{1}{3}x + \frac{1}{3}x^3\right]_0^m = \frac{1}{6}$ | M1         | 1.1a |                                   |
|   |         |     | $\frac{1}{3}m + \frac{1}{3}m^3 = \frac{1}{6} \implies 2m^3 + 2m - 1 = 0$ AG                                               | <b>A1</b>  | 1.1  |                                   |
|   |         |     |                                                                                                                           | [3]        |      |                                   |
| 3 | (i)     |     | At (24,11)                                                                                                                | <b>B1</b>  | 1.1a |                                   |
|   |         |     | Residual                                                                                                                  | M1         | 1.1  | Subtraction other way round       |
|   |         |     | $=11-(17.138-0.3727\times24)=11-8.1932$                                                                                   |            |      | scores M1 only                    |
|   |         |     | = 2.81                                                                                                                    | <b>A1</b>  | 1.1  |                                   |
|   |         |     |                                                                                                                           | [3]        |      |                                   |
| 3 | (ii)    | (A) | $x = 26 \ y = 7.45$                                                                                                       | B1         | 1.1  |                                   |
|   |         |     | Interpolation and points lie fairly close to the                                                                          | <b>E1</b>  | 3.5a | Must mention both                 |
|   |         |     | line so probably a good estimate                                                                                          |            |      |                                   |
|   |         | (P) | 16 11 15                                                                                                                  | [2]        |      |                                   |
|   |         | (B) | $x = 16 \ y = 11.17$                                                                                                      | B1         | 1.1  |                                   |
|   |         |     | Extrapolation so probably not reliable                                                                                    | E1         | 3.5b |                                   |
| 3 | (iii)   |     | The only factor with a large effect size when                                                                             | [2]<br>E1  | 2.2b |                                   |
| 3 | (III)   |     | correlated with hours of sleep is danger                                                                                  | EI         | 2.20 |                                   |
|   |         |     | It seems that the more dangerous the                                                                                      | <b>E</b> 1 | 2.2b | Or any other relevant comment,    |
|   |         |     | animal's situation, the less time it spends                                                                               |            | 2,28 | e.g. stating that the data do not |
|   |         |     | asleep                                                                                                                    |            |      | demonstrate causality, or saying  |
|   |         |     |                                                                                                                           |            |      | something relevant about the      |
|   |         |     |                                                                                                                           |            |      | other factors                     |
|   |         |     |                                                                                                                           | [2]        |      |                                   |

|   | Questio | n | Answer                                                                                              | Marks      | AOs  | Guidance                   |
|---|---------|---|-----------------------------------------------------------------------------------------------------|------------|------|----------------------------|
| 3 | (iv)    |   | There are outliers which affect the size of the pmcc                                                | <b>E</b> 1 | 3.5b |                            |
|   |         |   | A linear model may well be suitable for the                                                         | <b>E</b> 1 | 3.5c | Accept 'is suitable'.      |
|   |         |   | data with these outliers removed                                                                    |            |      | Or any other comment, e.g. |
|   |         |   |                                                                                                     |            |      | redraw scatter diagram (or |
|   |         |   |                                                                                                     |            |      | recalculate pmcc) without  |
|   |         |   |                                                                                                     |            |      | outliers                   |
|   |         |   |                                                                                                     | [2]        |      |                            |
| 4 | (i)     |   | $\left(\frac{5}{6}\right)^3 \times \frac{1}{6} = 0.0965$                                            | B1         | 1.1  |                            |
|   |         |   |                                                                                                     | [1]        |      |                            |
| 4 | (ii)    |   | $1-\left(\frac{5}{6}\right)^4$                                                                      | M1         | 1.1a |                            |
|   |         |   | (6)                                                                                                 |            |      |                            |
|   |         |   | =0.518                                                                                              | A1         | 1.1  |                            |
|   |         |   |                                                                                                     | [2]        |      |                            |
| 4 | (iii)   |   | $\frac{5}{6} \times \left(\frac{1}{6}\right)^2 + \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6}$ | M1         | 3.1b |                            |
|   |         |   | $=\frac{10}{216} = \frac{5}{108} = 0.0463$                                                          | A1         | 1.1  |                            |
|   |         |   |                                                                                                     | [2]        |      |                            |

|   | Questio      | n Answer                                                                                                 | Marks      | AOs  | Gı                         | idance                      |
|---|--------------|----------------------------------------------------------------------------------------------------------|------------|------|----------------------------|-----------------------------|
| 4 | (iv)         | $\frac{5}{108} + \left(\frac{1}{6}\right)^2$                                                             | M1         | 3.1b |                            |                             |
|   |              | $=\frac{8}{108} = \frac{2}{27} = 0.0741$                                                                 | A1         | 1.1  |                            |                             |
|   |              | Alternative Method $3 \times \left(\frac{1}{6}\right)^2 \times \frac{5}{6} + \left(\frac{1}{6}\right)^3$ | M1         |      |                            |                             |
|   |              | $= \frac{15}{216} + \frac{1}{216} = \frac{2}{27} = 0.0741$                                               | A1         |      |                            |                             |
|   |              |                                                                                                          | [2]        |      |                            |                             |
| 4 | ( <b>v</b> ) | Expected value for one five = 6                                                                          | <b>E</b> 1 | 1.1  | soi                        |                             |
|   |              | Because geometric                                                                                        | E1         | 2.4  |                            |                             |
|   |              | So for two fives expected value = $6 + 6 = 12$                                                           | B1<br>[3]  | 2.1  |                            |                             |
| 5 | (i)          | Mass of 5 small bags $\sim N(5 \times 508, 5 \times 3.3^2)$                                              | <b>B2</b>  | 3.3  | B1 For Normal and mean,    | Distribution must be stated |
|   |              | ~ N(2540,54.45)                                                                                          |            | 1.1  | B1 For variance            |                             |
|   |              | P(X < 2550) = 0.9123                                                                                     | <b>B</b> 1 | 3.4  | BC                         |                             |
|   |              |                                                                                                          |            |      | FT their mean and variance |                             |
|   |              |                                                                                                          | [3]        |      |                            |                             |
| 5 | (ii)         | Mean of $L-3S = 1515-3 \times 508 = -9$                                                                  | M1         | 3.3  | Mean                       |                             |
|   |              | Variance of $L - 3S = 4.7^2 + 9 \times 3.3^2$                                                            | M1         | 1.1  | Method for variance        |                             |
|   |              | $L-3S \sim N(-9,120.1)$                                                                                  | <b>A1</b>  | 1.1  | Correct variance           |                             |
|   |              | P(L-3S > 0) = 0.2058                                                                                     | <b>A1</b>  | 3.4  | BC                         |                             |
|   |              |                                                                                                          | [4]        |      |                            |                             |

|   | Question | Answer                                                                                                                                                                   | Marks        | AOs                 | Gı                                                                                  | iidance                                                                                                                                                                                                         |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | (i)      | Shape of scatter diagram not approx. elliptical                                                                                                                          | B1           | 3.5a                | OR B1 There does not appear to be a linear relationship                             |                                                                                                                                                                                                                 |
|   |          | so no evidence of bivariate Normal required for test using pmcc to be valid                                                                                              | B1 [2]       | 2.4                 | OR B1 so test using pmcc not appropriate [because that is for linear relationships] |                                                                                                                                                                                                                 |
| 6 | (ii)     | One-tail because evidence of a positive relationship is sought                                                                                                           | B1 [1]       | 2.4                 | o.e.                                                                                |                                                                                                                                                                                                                 |
| 7 | (i)      | Kolmogorov-Smirnov <i>p</i> -value [greater than 0.15] indicates that the data could be from a Normal distribution Sample small with unknown population variance  t-test | E1 E1 B1 [3] | 3.5a<br>2.4<br>3.1b |                                                                                     | <ul> <li>Cannot be sure the data are from a Normal distribution</li> <li>Mean ≈ median indicates distribution is fairly symmetrical</li> <li>OR SC1 For Wilcoxon with one of the above bullet points</li> </ul> |

|   | Question | Answer                                                        | Marks     | AOs         | G                         | uidance   |                    |             |           |
|---|----------|---------------------------------------------------------------|-----------|-------------|---------------------------|-----------|--------------------|-------------|-----------|
| 7 | (ii)     | $H_0$ : $\mu = 110.2$ $H_1$ : $\mu \neq 110.2$                | B1        | 1.1a        | Both hypotheses           |           |                    |             |           |
|   |          | Where $\mu$ is the population mean petrol price               | <b>B1</b> | 2.5         | Correct verbal definition | Allow hy  | potheses b         | ased on     | median if |
|   |          | for Yorkshire                                                 |           |             |                           | Wilcoxor  | chosen ir          | n (i)       |           |
|   |          | Test statistic is 111.6733-110.2                              | M1        | 3.3         |                           | FT metho  | d for calc         | ulation o   | f         |
|   |          | Test statistic is $\frac{111.6733-110.2}{6.4048/\sqrt{16.6}}$ |           |             |                           | Wilcoxor  | statistic          |             |           |
|   |          | $\sqrt{\sqrt{15}}$                                            |           |             |                           | Price     | -110.2             | rank        |           |
|   |          |                                                               |           |             |                           | 116.9     | 6.7                | 11          |           |
|   |          |                                                               |           |             |                           | 117.9     | 7.7                | 13          |           |
|   |          |                                                               |           |             |                           | 123.9     | 13.7               | 15          |           |
|   |          |                                                               |           |             |                           | 114.9     | 4.7                | 8           |           |
|   |          |                                                               |           |             |                           | 112.9     | 2.7                | 4           |           |
|   |          |                                                               |           |             |                           | 105.7     | -4.5               | 6           |           |
|   |          |                                                               |           |             |                           | 110.9     | 0.7                | 1           |           |
|   |          |                                                               |           |             |                           | 99.9      | -10.3              | 14          |           |
|   |          |                                                               |           |             |                           | 108.9     | -1.3               | 2           |           |
|   |          |                                                               |           |             |                           | 113.9     | 3.7                | 5           |           |
|   |          |                                                               |           |             |                           | 114.9     | 4.7                | 8           |           |
|   |          |                                                               |           |             |                           | 102.9     | -7.3               | 12          |           |
|   |          |                                                               |           |             |                           | 114.9     | 4.7                | 8           |           |
|   |          |                                                               |           |             |                           | 103.9     | -6.3               | 10          |           |
|   |          | = 0.8909                                                      | <b>A1</b> | 1.1         |                           | 112.7     | 2.5<br>atistic = 4 | 3           |           |
|   |          | Use of $t_{14}$                                               | M1        | 3.4         |                           |           | n = 15  ro         |             | covon     |
|   |          | 030 01 114                                                    | 1411      | J. <b>T</b> |                           | tables    | n = 1510           | vv O1 vv II | COAOII    |
|   |          | Critical value = 2.145                                        | <b>A1</b> | 1.1         |                           | FT Critic | al value =         | 25          |           |
|   |          | 0.8089 < 2.145 so do not reject H <sub>0</sub>                | M1        | 2.2b        |                           |           | 25 so do no        |             | $H_0$     |
|   |          | There is insufficient evidence that the                       | A1        | 3.5a        | Conclusion in context     |           |                    |             | -         |
|   |          | average price in Yorkshire is different from                  |           |             |                           |           |                    |             |           |
|   |          | that in the UK                                                | [8]       |             |                           |           |                    |             |           |

|   | Questi | on           | Answer                                           | Marks      | AOs  | Guidance                             |
|---|--------|--------------|--------------------------------------------------|------------|------|--------------------------------------|
| 8 | (i)    |              | The neutrons that are detected must occur        | E1         | 3.3  | For randomly, independently          |
|   |        |              | randomly, independently                          |            |      |                                      |
|   |        |              | and at a constant average rate.                  | <b>E</b> 1 | 3.3  | For constant average rate or         |
|   |        |              |                                                  |            |      | uniform rate but not constant        |
|   |        |              |                                                  |            |      | rate                                 |
|   |        |              |                                                  | [2]        |      |                                      |
| 8 | (ii)   | (A)          | P(0) = 0.333                                     | <b>B</b> 1 | 1.1  | BC                                   |
|   |        | ( <i>B</i> ) | $\lambda = 66$                                   | M1         | 3.3  |                                      |
|   |        |              | P(at least  60) = 1 - 0.214 = 0.786              | <b>A1</b>  | 3.4  | BC                                   |
|   |        |              |                                                  | [3]        |      |                                      |
| 8 | (iii)  |              | P(more than 8 neutrons)                          |            |      |                                      |
|   |        |              | = 1 - 0.999997573 = 0.000002427                  | <b>B1</b>  | 3.4  | BC                                   |
|   |        |              | Expected number = $1000 \times 0.000002427$      | M1         | 1.1a |                                      |
|   |        |              | = 0.00243                                        | A1         | 1.1  |                                      |
|   |        |              |                                                  | [3]        |      |                                      |
| 8 | (iv)   |              | New $\lambda = 3.4 + 1.1 = 4.5$                  | <b>B1</b>  | 3.1b |                                      |
|   |        |              | P(No alarm triggered in 1 second) = 0.95974      | <b>B1</b>  | 3.4  | BC                                   |
|   |        |              | P(At least one in 10 pds) = $1 - (0.95974)^{10}$ | M1         | 1.1a | FT from here if $\lambda = 3.4$ used |
|   |        |              | = 0.337                                          | A1         | 1.1  |                                      |
|   |        |              |                                                  | [4]        |      |                                      |

|   | Questio | on           | Answer                                                        | Marks     | AOs  | Guidance                              |
|---|---------|--------------|---------------------------------------------------------------|-----------|------|---------------------------------------|
| 9 | (i)     | (A)          | Sample size = 450                                             | B1        | 2.2a |                                       |
|   |         |              |                                                               | [1]       |      |                                       |
| 9 | (i)     | (B)          | Chi-squared test [for a contingency table]                    | B1        | 1.2  |                                       |
|   |         |              |                                                               | [1]       |      |                                       |
| 9 | (i)     | ( <i>C</i> ) | H <sub>0</sub> : no association between age and news          | B1        | 2.5  |                                       |
|   |         |              | source                                                        |           |      |                                       |
|   |         |              | H <sub>1</sub> : some association between age and news source |           |      |                                       |
|   |         |              | Source                                                        | [1]       |      |                                       |
| 9 | (ii)    |              | $D11 = \frac{113}{112} \times 100$                            | M1        | 3.4  |                                       |
|   |         |              | $D11 = \frac{1}{450} \times 100$                              |           |      |                                       |
|   |         |              | =25.11                                                        | A1        | 1.1  |                                       |
|   |         |              | $(8-11.84)^2$                                                 | M1        | 1.1  | $(O-F)^2$                             |
|   |         |              | $C18 = \frac{\left(8 - 11.84\right)^2}{11.84} = 1.25$         | A1        | 1.1  | M1 for $\frac{(O-E)^2}{E}$ applied at |
|   |         |              |                                                               |           |      | least once                            |
|   |         |              | $D17 = \frac{\left(22 - 25.11\right)^2}{25.11} = 0.39$        |           |      | A1 for both correct: accept           |
|   |         |              | 25.11                                                         |           |      | 1.245, 0.385                          |
|   |         |              |                                                               |           |      | (NB one can be calculated by          |
|   |         |              |                                                               |           |      | subtraction)                          |
|   |         |              |                                                               | [4]       |      |                                       |
| 9 | (iii)   |              | Degrees of freedom = 9                                        | B1        | 3.3  |                                       |
|   |         |              | Critical value = 16.92                                        | <b>B1</b> | 1.1  |                                       |
|   |         |              | Test statistic = 25.45                                        |           |      |                                       |
|   |         |              | 25.45 > 16.92 so reject H <sub>0</sub>                        | M1        | 2.2b |                                       |
|   |         |              | There is sufficient evidence to suggest that                  | A1        | 3.5a |                                       |
|   |         |              | there is some association between age and                     |           |      |                                       |
|   |         |              | primary news source                                           |           |      |                                       |
|   |         |              |                                                               | [4]       |      |                                       |

Y422 Mark Scheme June 20XX

|   | Question | Answer                                                                                                                                                                      | Marks | AOs  | Guidance                                                                                                           |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------------------------------------------------------------------------------------------------------------|
| 9 | (iv)     | For age group 18-32 and 33-47, the contributions of 3.18 and 2.82 show that more than expected have primary source the internet                                             | E1    | 3.5a |                                                                                                                    |
|   |          | For age group 65+, the contributions of 7.54 and 4.53 show that fewer than expected have primary source the internet and more than expected have primary source newspapers. | E1    | 3.5a |                                                                                                                    |
|   |          | For age group 48 - 64 the contributions show that primary sources are as expected                                                                                           | E1    | 3.5a | Allow other suitable answers.  Max 2 out of 3 if numerical values of contributions to test statistic not mentioned |
|   |          |                                                                                                                                                                             | [3]   |      |                                                                                                                    |

|    | Question | Answer                                            | Marks      | AOs  | Guidance                     |
|----|----------|---------------------------------------------------|------------|------|------------------------------|
| 10 | (i)      | Estimate of population variance =                 | M1         | 1.1  |                              |
|    |          | $\frac{134.280 - \frac{89.758^2}{60}}{59}$        |            |      |                              |
|    |          | = 0.00008515                                      | A1         | 1.1  |                              |
|    |          |                                                   | [2]        |      |                              |
| 10 | (ii)     | 1.49597                                           | B1         | 1.1  |                              |
|    |          | ±1.96                                             | M1         | 3.3  |                              |
|    |          | 0.0008515                                         | M1         | 1.1  |                              |
|    |          | ×√                                                |            |      |                              |
|    |          | $= 1.49597 \pm 0.00233$ or $(1.4936, 1.4983)$     | <b>A1</b>  | 3.4  | Allow (1.494, 1.498)         |
|    |          |                                                   | [4]        | A 1  |                              |
| 10 | (iii)    | It appears that the (population) mean content     | <b>E</b> 1 | 3.5a |                              |
|    |          | is not 1.5 litres as the calculated interval does |            |      |                              |
|    |          | not contain 1.5.                                  |            |      |                              |
| 10 | ( )      | 7.1.2                                             | [1]        | 2.1  |                              |
| 10 | (iv)     | Each time a sample is taken it will be            | E1         | 2.4  | Samples vary                 |
|    |          | different, so e.g. will have a different mean     | E1         | 2.4  | so confidence intervals vary |
|    |          | hence different midpoint for confidence           |            |      |                              |
|    |          | interval.                                         | F01        |      |                              |
| 10 |          | 200 007 207                                       | [2]        |      |                              |
| 10 | (v)      | $300 \times 0.95 = 285$                           | B1         | 1.1  |                              |
|    |          |                                                   | [1]        |      |                              |

| Question |       | n            | Answer                                                            | Marks      | AOs  | Guidance                      |
|----------|-------|--------------|-------------------------------------------------------------------|------------|------|-------------------------------|
| 11       | (i)   |              | $P(I - 60) = \frac{1}{I}$                                         | B1         | 1.1  |                               |
|          |       |              | $\frac{1(L-60)-\frac{1}{6}}{6}$                                   |            |      |                               |
|          |       |              | $P(L=60) = \frac{1}{6}$ $P(H=60) = \left(\frac{1}{6}\right)^{10}$ | M1         | 1.1  |                               |
|          |       |              |                                                                   | A 1        | 1.1  |                               |
|          |       |              | $=1.65\times10^{-8}$                                              | A1         | 1.1  |                               |
| 11       | (ii)  |              | Lili's score because Hui's score uses more                        | [3]<br>E1  | 2.2b | Any reasonable explanation    |
| 11       | (II)  |              | results so is likely to be closer to the mean                     | EI         | 2.20 | e.g. Lili's score has greater |
|          |       |              | results so is likely to be closel to the mean                     |            |      | standard deviation, as the    |
|          |       |              |                                                                   |            |      | extreme scores have higher    |
|          |       |              |                                                                   |            |      | probability                   |
|          |       |              |                                                                   | [1]        |      |                               |
| 11       | (iii) |              | Discrete uniform                                                  | B1         | 3.3  |                               |
|          |       |              | $E(X_1) = 3.5$                                                    | B1         | 1.1  |                               |
|          |       |              | $Var(X_1) = \frac{35}{12} [= 2.917]$                              | <b>B</b> 1 | 3.4  |                               |
|          |       |              | $\sqrt{al(X_1)} - \frac{1}{12}[-2.917]$                           |            |      |                               |
|          |       |              |                                                                   | [3]        |      |                               |
| 11       | (iv)  | (A)          | E(L) = 35                                                         |            |      | See ( <i>C</i> )              |
|          |       | (B)          | $Var(L) = 10^2 \times \frac{35}{12}$                              | M1         | 1.2  |                               |
|          |       |              | $= \frac{875}{3} = 291.7$ $E(H) = 35$                             | <b>A1</b>  | 1.1  |                               |
|          |       |              | 3                                                                 |            |      |                               |
|          |       | ( <i>C</i> ) | E(H) = 35                                                         | B1         | 1.1  | Both expected values correct  |
|          |       | (D)          | $Var(H) = 10 \times \frac{35}{12}$                                | M1         | 2.4  |                               |
|          |       |              | $\frac{175}{6} = 29.17$                                           | A1         | 1.1  |                               |
|          |       |              | 6                                                                 | F.#3       |      |                               |
|          |       |              |                                                                   | [5]        |      |                               |

| Question |       | n   | Answer                                                                                                                          | Marks           | AOs         | Guidance                                   |
|----------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------------------------------------------|
| 11       | (v)   |     | Estimate of $P(L > 40) = \frac{11}{25}$                                                                                         | B1              | 2.2b        |                                            |
|          |       |     | Estimate of P(H > 40) = $\frac{4}{25}$                                                                                          | B1              | 1.1         |                                            |
|          |       |     |                                                                                                                                 | [2]             |             |                                            |
| 11       | (vi)  | (A) | $P(L > 40) = \frac{1}{3}$                                                                                                       | B1              | 1.1         |                                            |
|          |       |     |                                                                                                                                 | [1]             |             |                                            |
| 11       | (vi)  | (B) | Estimate 0.44, calculated value 0.33. Some way off but not totally unreasonable approximation with only 25 trials.              | E1              | 3.2b        | Any sensible relevant comment Ft their (v) |
| 11       | (vii) | (A) | Produce a normal probability plot of the 25 values of Hui's scores (or of the scores ÷10)                                       | B1 [1]          | 1.2         |                                            |
| 11       | (vii) | (B) | if approximately a straight line then would appear to be from Normal distribution so Central Limit Theorem would seem to apply. | E1<br>E1<br>[2] | 2.4<br>2.2b |                                            |

Y422 Mark Scheme June 20XX

|    | Question |            | Answer                                       | Marks      | AOs  | Guidance                                                                      |  |
|----|----------|------------|----------------------------------------------|------------|------|-------------------------------------------------------------------------------|--|
| 11 | (viii)   | (A)        | $Mean \sim N\left(35, \frac{350}{12}\right)$ | M1         | 1.2  |                                                                               |  |
|    |          |            | P(Mean > 40) = P(Normal > 40.5)              | B1         | 3.4  | Continuity correction – with value of 40.5 as border (may have 40.5 included) |  |
|    |          |            | So $P(H > 40) \approx 0.154$                 | A1 [3]     | 1.1  | BC                                                                            |  |
| 11 | (viii)   | <b>(B)</b> | Agrees well with $\frac{4}{25} = 0.16$       | <b>E</b> 1 | 3.2b | FT their (v)                                                                  |  |
|    |          |            |                                              | [1]        |      |                                                                               |  |

Mark Scheme June 20XX

| Question   | AO1 | AO2 | AO3(PS) | AO3(M) | Totals |
|------------|-----|-----|---------|--------|--------|
| 1i         | 1   | 0   | 0       | 0      | 1      |
| 1ii        | 1   | 0   | 0       | 0      | 1      |
| 1iii       | 5   | 0   | 0       | 0      | 5      |
| 2iA        | 2   | 0   | 0       | 0      | 2      |
| 2iB        | 1   | 2   | 0       | 0      | 3      |
| 2iiA       | 2   | 0   | 0       | 0      | 2      |
| 2iiB       | 2   | 0   | 0       | 0      | 2      |
| 2iii       | 2   | 1   | 0       | 0      | 3      |
| 3i         | 3   | 0   | 0       | 0      | 3      |
| 3iiA       | 1   | 0   | 0       | 1      | 2      |
| 3iiB       | 1   | 0   | 0       | 1      | 2      |
| 3iii       | 0   | 2   | 0       | 0      | 2      |
| 3iv        | 0   | 0   | 0       | 2      | 2      |
| 4i         | 1   | 0   | 0       | 0      | 1      |
| 4ii        | 2   | 0   | 0       | 0      | 2      |
| 4iii       | 1   | 0   | 1       | 0      | 2      |
| 4iv        | 1   | 0   | 1       | 0      | 2      |
| 4v         | 1   | 2   | 0       | 0      | 3      |
| 5i         | 1   | 0   | 0       | 2      | 3      |
| 5ii        | 2   | 0   | 0       | 2      | 4      |
| 6i         | 0   | 1   | 0       | 1      | 2      |
| 6ii        | 0   | 1   | 0       | 0      | 1      |
| <b>7</b> i | 0   | 1   | 1       | 1      | 3      |
| 7ii        | 3   | 2   | 0       | 3      | 8      |
| 8i         | 0   | 0   | 0       | 2      | 2      |
| 8iiA       | 1   | 0   | 0       | 0      | 1      |
| 8iiB       | 0   | 0   | 0       | 2      | 2      |
| 8iii       | 2   | 0   | 0       | 1      | 3      |
| 8iv        | 2   | 0   | 1       | 1      | 4      |
| 9iA        | 0   | 1   | 0       | 0      | 1      |
| 9iB        | 1   | 0   | 0       | 0      | 1      |
| 9iC        | 0   | 1   | 0       | 0      | 1      |
| 9ii        | 3   | 0   | 0       | 1      | 4      |
| 9iii       | 1   | 1   | 0       | 2      | 4      |
| 9iv        | 0   | 0   | 0       | 3      | 3      |
| 10i        | 2   | 0   | 0       | 0      | 2      |
| 10ii       | 2   | 0   | 0       | 2      | 4      |
| 10iii      | 0   | 0   | 0       | 1      | 1      |
| 10iv       | 0   | 2   | 0       | 0      | 2      |
| 10v        | 1   | 0   | 0       | 0      | 1      |

| Question | AO1 | AO2 | AO3(PS) | AO3(M) | Totals |
|----------|-----|-----|---------|--------|--------|
| 11i      | 3   | 0   | 0       | 0      | 3      |
| 11ii     | 0   | 1   | 0       | 0      | 1      |
| 11iii    | 1   | 0   | 0       | 2      | 3      |
| 11iv     | 4   | 1   | 0       | 0      | 5      |
| 11v      | 1   | 1   | 0       | 0      | 2      |
| 11viA    | 1   | 0   | 0       | 0      | 1      |
| 11viB    | 0   | 0   | 1       | 0      | 1      |
| 11viiA   | 1   | 0   | 0       | 0      | 1      |
| 11viiB   | 0   | 2   | 0       | 0      | 2      |
| 11viiiA  | 2   | 0   | 1       | 0      | 3      |
| 11viiiB  | 0   | 0   | 0       | 1      | 1      |
| Totals   | 61  | 22  | 6       | 31     | 120    |