

# **GCE**

**Further Mathematics B (MEI)** 

Y422/01: Statistics major

**Advanced GCE** 

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

#### Annotations and abbreviations

| Annotation in scoris   | Meaning                                                                                                        |
|------------------------|----------------------------------------------------------------------------------------------------------------|
| √and <b>x</b>          |                                                                                                                |
| BOD                    | Benefit of doubt                                                                                               |
| FT                     | Follow through                                                                                                 |
| ISW                    | Ignore subsequent working                                                                                      |
| M0, M1                 | Method mark awarded 0, 1                                                                                       |
| A0, A1                 | Accuracy mark awarded 0, 1                                                                                     |
| B0, B1                 | Independent mark awarded 0, 1                                                                                  |
| Е                      | Explanation mark 1                                                                                             |
| SC                     | Special case                                                                                                   |
| ۸                      | Omission sign                                                                                                  |
| MR                     | Misread                                                                                                        |
| BP                     | Blank page                                                                                                     |
| Highlighting           |                                                                                                                |
|                        |                                                                                                                |
| Other abbreviations in | Meaning                                                                                                        |
| mark scheme            |                                                                                                                |
| E1                     | Mark for explaining a result or establishing a given result                                                    |
| dep*                   | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.               |
| cao                    | Correct answer only                                                                                            |
| oe                     | Or equivalent                                                                                                  |
| rot                    | Rounded or truncated                                                                                           |
| soi                    | Seen or implied                                                                                                |
| www                    | Without wrong working                                                                                          |
| AG                     | Answer given                                                                                                   |
| awrt                   | Anything which rounds to                                                                                       |
| BC                     | By Calculator                                                                                                  |
| DR                     | This indicates that the instruction In this question you must show detailed reasoning appears in the question. |

|   | Question   |  | Answer                                                  | Marks     | AOs  | Os Guidance                          |                      |
|---|------------|--|---------------------------------------------------------|-----------|------|--------------------------------------|----------------------|
| 1 | (a)        |  | 34.711                                                  | B1        | 1.1  |                                      |                      |
|   |            |  | ± 1.96                                                  | M1        | 3.3  |                                      |                      |
|   |            |  | $\times \frac{1.53}{\sqrt{50}}$                         | M1        | 1.1  |                                      |                      |
|   |            |  | $= 34.711 \pm 0.424$ or $(34.287, 35.135)$              | A1<br>[4] | 3.4  | Allow 34.29 to 35.13 or 35.14        |                      |
| 1 | <b>(b)</b> |  | 50 is a sufficiently large sample to apply the CLT      | B1*       | 2.2b | For mention of central limit theorem | No credit if CLT not |
|   |            |  | which states that for large samples the distribution of |           |      |                                      | mentioned            |
|   |            |  | the sample mean is approximately Normal                 | *B1       | 2.4  | For full statement (including CLT)   |                      |
|   |            |  |                                                         | [2]       |      |                                      |                      |

|   | )uestic      | on | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks           | AOs          | Guidance                                  |                                                                                          |
|---|--------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------------------------------------------|------------------------------------------------------------------------------------------|
| 2 | (a)          |    | $P(X=0) = \frac{6}{6} \times \frac{1}{6} \times \frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                       | M1              | 3.1a         |                                           | Allow M1 for $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$                             |
|   |              |    | $=\frac{1}{36}$                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 [2]          | 1.1          | AG                                        |                                                                                          |
| 2 | (b)          |    | 0.30<br>0.20<br>(x)<br>0.10<br>0.00<br>0 1 2 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                 | B1<br>B1<br>[2] | 1.1          | For heights For axes and labels           | Roughly correct but<br>must have linear scale<br>Do not allow just P on<br>vertical axis |
| 2 | (c)          |    | The distribution has (slight) negative skew                                                                                                                                                                                                                                                                                                                                                                                                        | B1<br>[1]       | 1.1          | Allow 'roughly symmetrical' or 'unimodal' | Not 'Normal distribution'                                                                |
| 2 | (d)          |    | DR<br>$E(X) = 0 \times \frac{1}{36} + 1 \times \frac{5}{36} + 2 \times \frac{2}{9} + 3 \times \frac{1}{4} + 4 \times \frac{2}{9} + 5 \times \frac{5}{36}$ $= \frac{105}{36} = \frac{35}{12} = 2.9166$ $E(X^{2}) = 0^{2} \times \frac{1}{36} + 1^{2} \times \frac{5}{36} + 2^{2} \times \frac{2}{9} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{2}{9} + 5^{2} \times \frac{5}{36}$ $= \frac{371}{36} = 10.3055$ $Var(X) = 10.3055 (2.9166)^{2}$ | M1<br>A1        | 1.1a 1.1 1.1 | Allow fraction or decimal form            |                                                                                          |
|   |              |    | $= \frac{259}{144} = 1.80  (1.7986)$                                                                                                                                                                                                                                                                                                                                                                                                               | A1 [5]          | 1.1          |                                           |                                                                                          |
| 2 | (e)          |    | Variance = $30^2 \times 1.7986 = 1619 \text{ (pence}^2\text{)}$                                                                                                                                                                                                                                                                                                                                                                                    | B1 [1]          | 1.1          |                                           |                                                                                          |
| 2 | ( <b>f</b> ) |    | Average amount received = $30 \times 2.916 = 87.5$<br>$k - 87.5 = 12.5 \Rightarrow k = 100$                                                                                                                                                                                                                                                                                                                                                        | B1<br>B1<br>[2] | 3.1a<br>1.1  |                                           |                                                                                          |

| C | Question |  | Answer                                                                                                                                                               |                       | AOs                 | Guidance                                                        |                                            |
|---|----------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-----------------------------------------------------------------|--------------------------------------------|
| 3 | (a)      |  | Using B(50, 0.04)<br>P(X = 2) = 0.276                                                                                                                                | M1<br>A1<br>[2]       | 3.3<br>1.1          | ВС                                                              |                                            |
| 3 | (b)      |  | $0.96^9 \times 0.04 = 0.0277$                                                                                                                                        | B1<br>[1]             | 1.1                 |                                                                 | Allow 0.028                                |
| 3 | (c)      |  | $0.96^{20} = 0.442$                                                                                                                                                  | B1<br>[1]             | 1.1                 |                                                                 |                                            |
| 3 | (d)      |  | Expected value for one misunderstood = $\frac{1}{0.04}$ = 25                                                                                                         | B1                    | 2.1                 |                                                                 | Must quote probabilities to get full marks |
|   |          |  | Because geometric<br>For 3 misunderstood expected number = 25 + 25 + 25<br>= 75                                                                                      | E1<br>E1<br>[3]       | 2.4<br>1.1          |                                                                 |                                            |
| 3 | (e)      |  | Require P(2 misunderstood in first 59) × 0.04<br>so using B(59, 0.04) gives P( $X = 2$ ) = 0.267<br>$0.267 \times 0.04 = 0.0107$                                     | B1<br>M1<br>A1<br>[3] | 3.1a<br>2.2a<br>1.1 | For identifying required probability Use of correct binomial BC |                                            |
| 4 | (a)      |  | Nuclei decay randomly and decays are independent with constant probability $\frac{1}{200000}$                                                                        | E1                    | 2.4                 | For partial explanation of binomial                             |                                            |
|   |          |  | The number of decays out of 1 000 000 is being counted, so a binomial distribution is appropriate Because $n = 1000000$ is large and $p = \frac{1}{200000}$ is small | E1                    | 2.4                 | For full explanation                                            |                                            |
|   |          |  | a Poisson distribution is also appropriate                                                                                                                           | E1<br>[3]             | 2.4                 | For explanation of Poisson                                      |                                            |
| 4 | (b)      |  | Po(5)<br>P(X = 6) = 0.146                                                                                                                                            | M1<br>A1              | 3.3<br>1.1          | BC<br>PC                                                        |                                            |
|   |          |  | P(X > 6) = 1 - 0.762 = 0.238                                                                                                                                         | A1<br>[3]             | 1.1                 | BC                                                              |                                            |
| 4 | (c)      |  | Mean = $10 \times 5 = 50$<br>P(at least 60 decays) = $1 - 0.9077 = 0.0923$                                                                                           | B1<br>B1<br>[2]       | 3.3<br>1.1          | ВС                                                              | Allow 0.092                                |

PMT

|   |            |          | 4.0                                                                                 | Cuidones        |            |                                                    |                                                |
|---|------------|----------|-------------------------------------------------------------------------------------|-----------------|------------|----------------------------------------------------|------------------------------------------------|
|   | Questic    | on       | Answer                                                                              | Marks           | AOs        | Guidance                                           |                                                |
| 5 | (a)        |          | Two A and one B ~ N(2 × 3.9 + 7.8, 2 × 0.32 <sup>2</sup> + 0.41 <sup>2</sup> )      | B1              | 3.3        | For N and mean                                     | Allow if N stated<br>anywhere in answer<br>SOI |
|   |            |          | N(15.6, 0.3729)<br>$P(\ge 16) = 0.256  (0.25622)$                                   | M1<br>A1<br>[3] | 1.1<br>3.4 | For variance <b>BC</b>                             |                                                |
| 5 | <b>(b)</b> |          | Four B – one C ~ $N(4 \times 7.8 - 30.2, 4 \times 0.41^2 + 0.64^2)$                 | B1              | 3.3        | For N and mean                                     | Allow -1 for mean                              |
|   |            |          | N(1, 1.082)                                                                         | M1              | 1.1        | For variance                                       | Allow if N stated                              |
|   |            |          | P(within 1 unit) = $0.473 (0.47274)$                                                | A1              | 3.4        | BC                                                 | anywhere in answer SOI                         |
| L |            | <u> </u> | DD.                                                                                 | [3]             |            |                                                    |                                                |
| 5 | (c)        |          | <b>DR</b> $H_0$ : $\mu = 30.2$ $H_1$ : $\mu \neq 30.2$                              | B1              | 3.3        | Hypotheses in words only must include "population" |                                                |
|   |            |          | where $\mu$ is the population mean capacitance<br>Sample mean = 29.96               | B1<br>B1        | 1.2<br>1.1 | For definition in context                          |                                                |
|   |            |          | Est. population variance = $\frac{1}{9} \left( 8981.0 - \frac{299.6^2}{10} \right)$ | M1              | 1.1        |                                                    |                                                |
|   |            |          | = 0.5538                                                                            | <b>A1</b>       | 1.1        |                                                    | Or $sd = 0.7442$                               |
|   |            |          | Test statistic = $\frac{29.96 - 30.2}{\sqrt{\frac{0.5538}{10}}}$                    | M1              | 3.3        | FT their mean and/or sd                            |                                                |
|   |            |          | = -1.020                                                                            | A1              | 1.1        | BC                                                 |                                                |
|   |            |          | Refer to t <sub>9</sub>                                                             | M1              | 3.4        | No FT if not t <sub>9</sub>                        |                                                |
|   |            |          | Critical value (2-tailed) at 5% level is 2.262                                      | A1              | 1.1        | Tio I I Hot by                                     | Or                                             |
|   |            |          |                                                                                     |                 |            |                                                    | P(t < -1.020) = 0.1672                         |
|   |            |          | -1.020 > -2.262 so not significant (do not reject H <sub>0</sub> )                  | M1              | 2.2b       | Or 1.020 < 2.262                                   | Or $0.1672 > 0.025$                            |
|   |            |          | Insufficient evidence to suggest that the capacitance of                            | <b>E</b> 1      | 3.5a       |                                                    | Answer must be in                              |
|   |            |          | the batch is different from 30.2                                                    |                 |            |                                                    | context                                        |
|   |            |          |                                                                                     | [11]            |            |                                                    |                                                |

PMT

| C | Questic | on | Answer                                                                                                 | Marks      | AOs         | Guidance                                |                                                                  |
|---|---------|----|--------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------------------------|------------------------------------------------------------------|
| 6 | (a)     |    | Mean = 1.725                                                                                           | B1         | 1.1         |                                         | $Or \frac{345}{200}$                                             |
|   |         |    | Variance = 1.768                                                                                       | <b>B1</b>  | 1.1         | Condone 1.759 (using divisor <i>n</i> ) | 200                                                              |
|   |         |    | The variance is reasonably close to the mean so this does support the suitability of a Poisson model   | <b>E</b> 1 | 2.2b        |                                         | Dep on mean and variance correct                                 |
|   |         |    |                                                                                                        | [3]        |             |                                         |                                                                  |
| 6 | (b)     |    | Cell C3 = 0.3106<br>Cell D3 = 62.1124                                                                  | B1<br>B1FT | 3.4<br>2.2a | 200 × their C3 (62.12 if use 0.3106)    |                                                                  |
|   |         |    | $Cell E3 = \frac{(65 - 62.1224)^2}{62.1224}$                                                           | M1FT       | 1.1a        |                                         | Must show working to get M1                                      |
|   |         |    | = 0.1342                                                                                               | A1<br>[4]  | 1.1         |                                         | Allow 0.126 from 62.2                                            |
| 6 | (c)     |    | Because otherwise some expected frequencies would be less than 5 so too small for the test to be valid | E1<br>[1]  | 3.5b        | For 'less than 5 so invalid'            |                                                                  |
| 6 | (d)     |    | $H_0$ : Poisson model is a good fit $H_1$ : Poisson model is not a good fit $X^2 = 2.43$               | B1<br>B1FT | 2.5<br>1.1  | FT Their value of E3                    |                                                                  |
|   |         |    | Refer to $\chi_5^2$                                                                                    | <b>B1</b>  | 3.4         | For degrees of freedom = 5 soi          |                                                                  |
|   |         |    | Critical value at 5% level = 11.07                                                                     | B1         | 1.1         |                                         | Allow M1 (not A1) for                                            |
|   |         |    | 2.43 < 11.07 so result is not significant                                                              | M1         | 1.1         | For comparison with critical value      | comparison with any chi squared critical value eg 1.145 or 5.991 |
|   |         |    | There is insufficient evidence to suggest that the Po(1.7) model is not a good fit.                    | A1         | 2.2b        | Conclusion in context                   | 1 - · · · -                                                      |
|   |         |    |                                                                                                        | [6]        |             |                                         |                                                                  |

|   | Questio    | n    | Answer                                                | Marks      | AOs  | Guidance                                |  |
|---|------------|------|-------------------------------------------------------|------------|------|-----------------------------------------|--|
| 7 | (a)        |      | The pairing will eliminate any differences in grip    | <b>E</b> 1 | 2.2b | Give 1 mark for any valid comment       |  |
|   |            |      | strengths between different people and so will only   | <b>E</b> 1 | 2.2b | For 2 marks must include pairing        |  |
|   |            |      | compare the grip strengths of the dominant and non-   |            |      |                                         |  |
|   |            |      | dominant hands                                        | [2]        |      |                                         |  |
| 7 | <b>(b)</b> |      | The parent population of differences must be Normally | <b>E</b> 1 | 1.1  | For Normally distributed                |  |
|   |            |      | distributed                                           | <b>E</b> 1 | 1.2  | For full answer including 'differences' |  |
|   |            |      |                                                       | [2]        |      |                                         |  |
| 7 | (c)        |      | It does because the confidence interval contains 2    | <b>E</b> 1 | 3.5a |                                         |  |
|   |            |      |                                                       | [1]        |      |                                         |  |
| 7 | (d)        | (i)  | Sample mean difference = 2.39                         | <b>B1</b>  | 1.1  |                                         |  |
|   |            |      | $0.45 = 1.96 \times \frac{\text{SD}}{\sqrt{100}}$     | M1         | 3.1b |                                         |  |
|   |            |      | Sample $SD = 2.30 (2.2959)$                           | <b>A1</b>  | 1.1  |                                         |  |
|   |            |      | ( ) ( )                                               | [3]        |      |                                         |  |
| 7 | (d)        | (ii) | The sample must be random                             | B1         | 3.2b |                                         |  |
|   |            |      | since only a random sample enables proper inference   | <b>B1</b>  | 2.4  | Do not allow eg a random sample is      |  |
|   |            |      | about the population to be undertaken                 |            |      | less likely to be biased                |  |
|   |            |      |                                                       | [2]        |      |                                         |  |

PMT

|   | )uestio    | <br>on | Answer                                                                                                                                                                                         | Marks           | AOs          | Guidance                                                                              |                                         |
|---|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------------------------------------------------------------------------------|-----------------------------------------|
| 8 | (a)        | (i)    | Predicted = 50.5                                                                                                                                                                               | B1<br>[1]       | 1.1          |                                                                                       | Do not allow answer to more than 2dp    |
| 8 | (a)        | (ii)   | Although this point lies within the data (interpolation), the points do not lie too close to the line and the value of $r^2$ is not too close to 1 so the estimate is only moderately reliable | B1<br>B1        | 2.2a<br>3.5b | Mention of 1 of the three points Mention of at least 2 points with correct conclusion |                                         |
| 8 | (a)        | (iii)  | Coordinates (47.3, 48.7)                                                                                                                                                                       | B1<br>[1]       | 1.1          |                                                                                       |                                         |
| 8 | (a)        | (iv)   | This is the point with coordinates which are the means of the <i>x</i> - and <i>y</i> -values respectively                                                                                     | B1<br>[1]       | 1.1          | Allow 'This is the centroid'                                                          |                                         |
| 8 | (b)        | (i)    | The scatter diagram is very roughly elliptical and so the distribution may be bivariate Normal                                                                                                 | E1<br>E1<br>[2] | 3.5a<br>2.4  |                                                                                       |                                         |
| 8 | (b)        | (ii)   | $S_{vt} = 3886.53 - \frac{1}{20} \times 80.37 \times 970.86  (= -14.87)$                                                                                                                       | M1              | 1.1a         | Numerical evaluations are not required at this stage                                  |                                         |
|   |            |        | $S_{tt} = 324.71 - \frac{1}{20} \times 80.37^{2}  (= 1.743)$ $S_{vv} = 47829.24 - \frac{1}{20} \times 970.86^{2}  (= 700.78)$                                                                  | M1              | 1.1          | For either $S_{tt}$ or $S_{vv}$                                                       |                                         |
|   |            |        | $r = \frac{S_{tv}}{\sqrt{S_{tt}S_{vv}}} = \frac{-14.87}{\sqrt{1.743 \times 700.78}}$                                                                                                           | M1              | 3.3          | For general form including sq. root                                                   |                                         |
|   |            |        | =-0.4255                                                                                                                                                                                       | A1<br>[4]       | 1.1          | BC                                                                                    |                                         |
| 8 | <b>(b)</b> | (iii)  | $H_0: \rho = 0, H_1: \rho < 0$                                                                                                                                                                 | B1              | 3.3          | For both hypotheses                                                                   | Do not allow $r$ in place               |
|   |            |        | where $\rho$ is the population pmcc between $t$ and $v$                                                                                                                                        | <b>B</b> 1      | 2.5          | For defining $\rho$                                                                   | of $\rho$                               |
|   |            |        | For $n = 20$ , the 5% critical value is 0.3783                                                                                                                                                 | B1              | 3.4          | For correct critical value                                                            | Hypotheses in words                     |
|   |            |        | Since $ -0.4255  > 0.3783$ the result is significant,                                                                                                                                          | N/I             | 1.1          | For comparison and conclusion                                                         | only get B1 unless population mentioned |
|   |            |        | so there is sufficient evidence to reject H <sub>0</sub> There is sufficient evidence at the 5% level to suggest                                                                               | M1              | 1.1          | Allow -0.4255 < -0.3783                                                               | population mentioned                    |
|   |            |        | that there is negative correlation between marathon                                                                                                                                            |                 |              |                                                                                       | Answer must be in                       |
|   |            |        | time and $VO_{2max}$                                                                                                                                                                           | A1FT            | 2.2b         | FT for conclusion in words                                                            | context                                 |
|   |            |        |                                                                                                                                                                                                | [5]             |              |                                                                                       |                                         |

| Question |            | on | Answer                                                                 | Marks      | AOs         | Guidance                                      |                                          |  |
|----------|------------|----|------------------------------------------------------------------------|------------|-------------|-----------------------------------------------|------------------------------------------|--|
| 9        | (a)        |    | $P(X > \frac{1}{2}n) = \frac{\frac{1}{2}(n+1)}{2n+1}$                  | M1<br>M1   | 3.1a<br>1.1 | For correct denominator For correct numerator |                                          |  |
|          |            |    | $=\frac{n+1}{2(2n+1)}$                                                 | <b>A1</b>  | 1.1         |                                               |                                          |  |
|          |            |    |                                                                        | [3]        |             |                                               |                                          |  |
| 9        | (b)        |    | $(2n+1)$ values so $Var(X) = \frac{1}{12}[(2n+1)^2 - 1]$               | M1         | 3.1a        |                                               |                                          |  |
|          |            |    | Var of sum of 10 values = $10 \times \frac{1}{12} [(2n+1)^2 - 1]$      | M1         | 1.1         |                                               | Allow M1 for 10× any attempt at variance |  |
|          |            |    | $= \frac{10}{3}n^2 + \frac{10}{3}n$                                    | <b>A1</b>  | 1.1         |                                               |                                          |  |
|          |            |    |                                                                        | [3]        |             |                                               |                                          |  |
| 10       | (.)        | 1  | T                                                                      | <u> </u>   |             | T                                             |                                          |  |
| 10       | (a)        |    | $P(T \le 56) = \frac{104}{500} = 0.208$                                | B1         | 1.1         |                                               |                                          |  |
|          |            |    | $P(T > 61) = 1 - \frac{253}{500} = 0.494$                              | B1         | 1.1         |                                               |                                          |  |
|          |            |    |                                                                        | [2]        |             |                                               |                                          |  |
| 10       | <b>(b)</b> |    | E(T) = 25 + 28 + 5 + 3 = 61                                            | B1         | 3.1a        |                                               |                                          |  |
|          |            |    | $Var(T) = \frac{1}{12} \times 10^2 + \frac{1}{12} \times 6^2 + 4 + 16$ | M1         | 1.1         |                                               |                                          |  |
|          |            |    | $= \frac{94}{3}  (= 31.333)$                                           | A1         | 1.1         |                                               |                                          |  |
|          |            |    | $W \sim N(61, 31.333)$ so $P(W \le 56) = 0.186$                        | <b>B1</b>  | 3.3         | BC                                            |                                          |  |
|          |            |    | P(W > 61) = 0.5                                                        | <b>B</b> 1 | 1.1         |                                               |                                          |  |
| 10       |            |    |                                                                        | [5]        |             |                                               |                                          |  |
| 10       | (c)        |    | Because the mean is 61 and both the uniform and                        | E1         | 2.2b        | E d d d'                                      |                                          |  |
|          |            |    | Normal distributions are symmetrical so you                            | <b>E</b> 1 | 2.4         | For second mark must mention                  |                                          |  |
|          |            |    | would expect the simulated probability to be very close to 0.5         | [2]        |             | symmetrical                                   |                                          |  |

| Q  | Questio    | n | Answer                                                              | Marks     | AOs  | Guidance                           |  |
|----|------------|---|---------------------------------------------------------------------|-----------|------|------------------------------------|--|
| 11 | (a)        |   | $F(3) = 1 \Rightarrow \int_0^2 ax^2 dx + \int_2^3 b(3-x)^2 dx = 1$  | M1        | 3.1a |                                    |  |
|    |            |   | $\Rightarrow \frac{8}{3}a + \frac{1}{3}b = 1$                       | A1        | 1.1  |                                    |  |
|    |            |   | $E(X) = 2 \Rightarrow \int_0^2 ax^3 dx + \int_2^3 bx(3-x)^2 dx = 2$ | M1        | 3.1a |                                    |  |
|    |            |   | $\Rightarrow 4a + \frac{3}{4}b = 2$                                 | <b>A1</b> | 1.1  |                                    |  |
|    |            |   | $a = \frac{1}{8}, b = 2$                                            | <b>A1</b> | 1.1  |                                    |  |
|    |            |   |                                                                     | [5]       |      |                                    |  |
| 11 | <b>(b)</b> |   | $F(2) = \int_0^2 \frac{1}{8} x^2 dx = \frac{1}{3}$                  | B1        | 3.1a |                                    |  |
|    |            |   | $\Rightarrow \int_2^m 2(3-x)^2  \mathrm{d}x = \frac{1}{6}$          | M1        | 2.2a |                                    |  |
|    |            |   | $\Rightarrow -\frac{2}{3}(3-m)^3 + \frac{2}{3} = \frac{1}{6}$       |           |      |                                    |  |
|    |            |   | $\Rightarrow (3-m)^3 = \frac{3}{4} \Rightarrow m = 2.09  (2.0914)$  | A1        | 1.1  | Or $m = 3 - \sqrt[3]{\frac{3}{4}}$ |  |
|    |            |   |                                                                     | [3]       |      |                                    |  |
| 11 | (c)        |   | Using N(2, $\frac{0.2}{50}$ )                                       | M1        | 3.1a | For use of Normal distribution     |  |
|    |            |   | N(2, 0.004)                                                         | M1        | 1.1a | For correct values                 |  |
|    |            |   | Estimate $P(Mean < 1.9) = 0.0569$                                   | A1<br>[3] | 1.1  |                                    |  |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

#### **OCR Customer Contact Centre**

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

