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INSTRUCTIONS  
• Use black ink. HB pencil may be used for graphs and diagrams only. 
• Complete the boxes provided on the Printed Answer Booklet with your name, centre number 

and candidate number. 
• Answer all the questions. 
• Write your answer to each question in the space provided in the Printed Answer 

Booklet. 
• Additional paper may be used if necessary but you must clearly show your candidate 

number, centre number and question number(s). 
• Do not write in the bar codes. 
• You are permitted to use a scientific or graphical calculator in this paper. 
• Final answers should be given to a degree of accuracy appropriate to the context. 
 
INFORMATION 
• The total number of marks for this paper is 144. 
• The marks for each question are shown in brackets [ ]. 
• You are advised that an answer may receive no marks unless you show sufficient detail of the 

working to indicate that a correct method is used. You should communicate your method with 
correct reasoning. 

• The Printed Answer Booklet consists of 24 pages. The Question Paper consists of 8 pages. 
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Section A (33 marks) 
 

Answer all the questions. 
 

1  Find the acute angle between the lines with vector equations 
3 1
0 2
2 1

O
§ · § ·
¨ ¸ ¨ ¸ �¨ ¸ ¨ ¸
¨ ¸ ¨ ¸� �© ¹ © ¹

r  and 
1 3
5 1
3 2

P
§ · § ·
¨ ¸ ¨ ¸ �¨ ¸ ¨ ¸
¨ ¸ ¨ ¸�© ¹ © ¹

r . [3] 

 

2   (i) On an Argand diagram draw the locus of points which satisfy � �arg 4i .
4

z S
�   [2] 

 
  (ii) Give, in complex form, the equation of the circle which has centre at 6 4i�  and touches the locus in 

part (i). [4] 
 
 

3  Transformation M  is represented by matrix 
2 3

.
1 4
§ ·

 ¨ ¸
© ¹

M   

   (i) On the diagram in the Printed Answer Booklet draw the image of the unit square under M . [2] 
 

  (ii) (A) Show that there is a constant k such that 5
x x
kx kx
§ · § ·

 ¨ ¸ ¨ ¸
© ¹ © ¹

M  for all x.  [2] 

  (B) Hence find the equation of an invariant line under M . [1] 
 
  (C) Draw the invariant line from part (ii) (B) on your diagram for part (i). [1] 
 
 
4 You are given that 1 2iz  �  is a root of the equation 3 25 15 0z z qz� � �  ,  where .q�   
 
 Find  

x the other roots,  
x the value of q . [5] 

  
5  (i) Express 2

( 1)( 3)r r� �
 in partial fractions.  [2] 

  (ii) Hence find  
1

1 ,
( 1)( 3)

n

r r r � �¦  expressing your answer as a single fraction.  [5] 
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6  (i) A curve is in the first quadrant. It has parametric equations cosh sinh ,x t t �  cosh sinhy t t � where 
t� . Show that the cartesian equation of the curve is 1.xy   [2] 

 
 Fig. 6 shows the curve from part (i). P is a point on the curve. O is the origin. Point A lies on the x-axis, 

point B lies on the y-axis and OAPB is a rectangle. 
 

 
Fig. 6 

 
  (ii) Find the smallest possible value of the perimeter of rectangle OAPB. Justify your answer. [4] 
 
  

y 

x 
O 

B P 

A 
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Section B (111 marks) 
 

Answer all the questions 
 

7   (i) Use the Maclaurin series for ln(1 )x�  up to the term in 3x  to obtain an approximation to ln1.5.   [2] 
 
  (ii) (A) Find the error in the approximation in part (i).  [1] 
   
  (B) Explain why the Maclaurin series in part (i), with 2,x   should not be used to find an 

approximation to ln3.   [1]  
 

 (iii) Find a cubic approximation to 
1ln
1

x
x

�§ ·
¨ ¸�© ¹

.  [2] 

 
 (iv) (A) Use the approximation in part (iii) to find approximations to  

x ln 1.5 and  
x ln3 .  [3] 

 

   (B) Comment on your answers to part (iv) (A).  [2] 
 
 
8  Find the cartesian equation of the plane which contains the three points (1, 0, 1)� , (2, 2,1)  and (1,1, 2) .  

    [5] 
 
 
9 A curve has polar equation sin3r a T  for 1 1

3 3S T S� d d , where a is a positive constant. 
 
   (i) Sketch the curve. [2] 
 
    (ii) In this question you must show detailed reasoning. 
  
  Find, in terms of a and ,S  the area enclosed by one of the loops of the curve. [5] 
 
 
10   (i)  Obtain the solution to the differential equation 
 

d 13
d
yx y
x x
�   , where 0x !  , 

 

   given that 1y   when 1x  . [7] 
 
  (ii) Deduce that y decreases as x increases. [2] 
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11   (i) It is conjectured that 
 

1 2 3 1...
2! 3! 4! ! !

n ba
n n
�

� � � �  � , 

 

   where a and b are constants, and n is an integer such that 2.n t  
 
   By considering particular cases, show that if the conjecture is correct then 1a b  . [2] 
 
  (ii) Use induction to prove that 
 

                                                         
1 2 3 1 1... 1
2! 3! 4! ! !

n
n n
�

� � � �  �  for 2n t . [7] 

 
 

12  In this question you must show detailed reasoning.   

  (i) Given that arctany x , show that 2
d 1
d 1
y
x x
 

�
. [3] 

 

  Fig. 12 shows the curve 2

1
1

y
x

 
�

. 

 
Fig. 12 

 

   (ii) Find, in exact form, the mean value of the function 2

1f( )
1

x
x

 
�

 for 1 1x� d d . [3] 

 
 (iii) The region bounded by the curve, the x-axis, and the lines 1x   and 1x  �  is rotated through  

2S radians about the x-axis. Find, in exact form, the volume of the solid of revolution generated. [7] 
 
 
 
 
 
 
 
 
 
 

y 

x 
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13  Matrix M  is given by 
1 5

2 3 3
1 2 2

k �§ ·
¨ ¸ �¨ ¸
¨ ¸�© ¹

M , where k is a constant. 

  
   (i) Show that det 12( 3)k �M .  [2] 
 
 (ii)  Find a solution of the following simultaneous equations for which .x zz  
 

2 2 2

2 2 2

2 2 2

4 5 6
2 3 3 6

2 2 6

x y z
x y z
x y z

� �  

� �  

� � �  �

 

      [3] 
 
 (iii) (A) Verify that the point (2, 0, 1)  lies on each of the following three planes. 

 

3 5 1
2 3 3 1

2 2 0

x y z
x y z
x y z

� �  
� �  

� � �  
 

     [1] 
 

  (B) Describe how the three planes in part (iii) (A) are arranged in 3-D space. Give reasons for your 
answer.  [4] 

 
  (iv) Find the values of k for which the transformation represented by M  has a volume scale factor of 6.  
      [3] 
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14   (i) Starting with the result 

 
ie cos isinT T T � , 

 

 show that 
 

  (A)  � �cos isin cos isinn n nT T T T�  �   [2] 
 

  (B)  � �i i1cos e e
2

T TT � � .  [2] 

 
    (ii) Using the result in part (i) (A), obtain the values of the constants a, b, c and d in the identity 
 

                                                   6 4 2cos6 cos cos cosa b c dT T T T{ � � � .  [6] 
 

   (iii) Using the result in part (i) (B), obtain the values of the constants P, Q, R and S in the identity 
 
                                                  6cos cos6 cos4 cos2P Q R ST T T T{ � � � . [5] 

 

   (iv) Show that 

1
626 15 3cos

12 64
S § ·�

 ¨ ¸¨ ¸
© ¹

.  [3] 

 
 
15  In this question you must show detailed reasoning.  
  
  Show that  

                                                    
2
3

0

2 1arsinh 2 d ln3
3 3

x x  �µ́
¶

. [8] 
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16  A small object is attached to a spring and performs oscillations in a vertical line. The displacement of the 
object at time t seconds is denoted by x cm. 

 
  Preliminary observations suggest that the object performs simple harmonic motion (SHM) with a period of 

2 seconds about the point at which 0x  . 
 
   (i) (A) Write down a differential equation to model this motion.  [3] 
 
   (B) Give the general solution of the differential equation in part (i) (A).  [1] 
 

 Subsequent observations indicate that the object’s motion would be better modelled by the differential 
equation  

          � �
2

2
2

d d2 9 0
d d

x xk k x
t t
� � �         (*) 

 
  where k is a positive constant. 
 
  (ii) (A) Obtain the general solution of (*). [3] 
 
  (B) State two ways in which the motion given by this model differs from that in part (i). [2] 
 

 The amplitude of the object’s motion is observed to reduce with a scale factor of 0.98 from one oscillation 
to the next. 

  
 (iii) Find the value of k. [3] 
 
  At the start of the object’s motion, 0x   and the velocity is 12 cm s–1 in the positive x direction. 
 
 (iv) Find an equation for x as a function of t. [4] 
 
  (v) Without doing any further calculations, explain why, according to this model, the greatest distance of 

the object from its starting point in the subsequent motion will be slightly less than 4 cm. [2] 
 
 

END OF QUESTION PAPER 
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