

Monday 4 October 2021 – Afternoon AS Level Further Mathematics B (MEI)

Y410/01 Core Pure

Time allowed: 1 hour 15 minutes

You must have:

- the Printed Answer Booklet
- the Formulae Booklet for Further Mathematics B (MEI)
- a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided in the Printed Answer
 Booklet. If you need extra space use the lined pages at the end of the Printed Answer
 Booklet. The question numbers must be clearly shown.
- Fill in the boxes on the front of the Printed Answer Booklet.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.
- Give your final answers to a degree of accuracy that is appropriate to the context.
- Do **not** send this Question Paper for marking. Keep it in the centre or recycle it.

INFORMATION

- The total mark for this paper is 60.
- The marks for each question are shown in brackets [].
- This document has 4 pages.

ADVICE

Read each question carefully before you start your answer.

[2]

Answer all the questions.

- 1 Using standard summation formulae, find $\sum_{r=1}^{n} (r^2 3r)$, giving your answer in fully factorised form. [3]
- **2** The equation $3x^2 4x + 2 = 0$ has roots α and β .

Find an equation with integer coefficients whose roots are $3-2\alpha$ and $3-2\beta$. [3]

3 Three planes have the following equations.

$$2x-3y+z=-3,x-4y+2z=1,-3x-2y+3z=14.$$

- (a) (i) Write the system of equations in matrix form. [1]
 - (ii) Hence find the point of intersection of the planes. [2]
- (b) In this question you must show detailed reasoning.

Find the acute angle between the planes 2x-3y+z=-3 and x-4y+2z=1. [4]

4 Anika thinks that, for two square matrices **A** and **B**, the inverse of **AB** is $\mathbf{A}^{-1}\mathbf{B}^{-1}$. Her attempted proof of this is as follows.

$$(\mathbf{A}\mathbf{B})(\mathbf{A}^{-1}\mathbf{B}^{-1}) = \mathbf{A}(\mathbf{B}\mathbf{A}^{-1})\mathbf{B}^{-1}$$

$$= \mathbf{A}(\mathbf{A}^{-1}\mathbf{B})\mathbf{B}^{-1}$$

$$= (\mathbf{A}\mathbf{A}^{-1})(\mathbf{B}\mathbf{B}^{-1})$$

$$= \mathbf{I} \times \mathbf{I}$$

$$= \mathbf{I}$$
Hence $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$

(a) Explain the error in Anika's working.

(b) State the correct inverse of the matrix **AB** and amend Anika's working to prove this. [3]

© OCR 2021 Y410/01 Oct21

5 Prove by induction that
$$\sum_{r=1}^{n} r \times 2^{r-1} = 1 + (n-1)2^n$$
 for all positive integers n . [5]

- 6 A transformation T of the plane has associated matrix $\mathbf{M} = \begin{pmatrix} 1 & \lambda + 1 \\ \lambda 1 & -1 \end{pmatrix}$, where λ is a non-zero constant.
 - (a) (i) Show that T reverses orientation. [3]
 - (ii) State, in terms of λ , the area scale factor of T. [1]
 - **(b) (i)** Show that $M^2 \lambda^2 I = 0$. [2]
 - (ii) Hence specify the transformation equivalent to two applications of T. [1]
 - (c) In the case where $\lambda = 1$, T is equivalent to a transformation S followed by a reflection in the x-axis.
 - (i) Determine the matrix associated with S. [3]
 - (ii) Hence describe the transformation S. [2]
- 7 (a) (i) Find the modulus and argument of z_1 , where $z_1 = 1 + i$. [2]
 - (ii) Given that $|z_2| = 2$ and $\arg(z_2) = \frac{1}{6}\pi$, express z_2 in a+bi form, where a and b are exact real numbers. [2]
 - (b) Using these results, find the exact value of $\sin \frac{5}{12}\pi$, giving the answer in the form $\frac{\sqrt{m} + \sqrt{n}}{p}$, where m, n and p are integers. [5]
- 8 In this question you must show detailed reasoning.

The equation $x^3 + kx^2 + 15x - 25 = 0$ has roots α , β and $\frac{\alpha}{\beta}$. Given that $\alpha > 0$, find, in any order,

• the roots of the equation,

• the value of k. [7]

4

- 9 (a) On a single Argand diagram, sketch the loci defined by
 - $\bullet \quad \arg(z-2) = \frac{3}{4}\pi,$

•
$$|z| = |z + 2 - i|$$
. [4]

(b) In this question you must show detailed reasoning.

The point of intersection of the two loci in part (a) represents the complex number w.

Find w, giving your answer in exact form. [5]

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2021 Y410/01 Oct21