

...day June 20XX - Morning/Afternoon

A Level Further Mathematics B (MEI) Y421 Mechanics Major

SAMPLE MARK SCHEME

Duration: 2 hours 15 minutes

MAXIMUM MARK 120

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

2. Subject-specific Marking Instructions for A Level Further Mathematics B (MEI)

- Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 If you are in any doubt whatsoever you should contact your Team Leader.
- c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.
- k Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned on this occasion, but shows what a complete solution might look like

	Questio	on Answer	Marks	AOs	Guidance
1		$\mathbf{v} = (3t^2 - 6t)\mathbf{i} - 8t\mathbf{j}$	M1	1.1a	Differentiate
		$\mathbf{a} = (6t - 6)\mathbf{i} - 8\mathbf{j}$	M1	1.1	Differentiate
		When $t = 2$, $a = 6i - 8j$	M1	1.1	Substitute $t = 2$
		Magnitude of acceleration = 10 m s^{-2}	A1	1.1	
			[4]		
2		Impulse is $5(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$	B1	1.1	
		$5(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 5(\mathbf{v} - 2\mathbf{i} - 5\mathbf{j})$	M1	3.4	Use
					Impulse = change in momentum
		$\mathbf{v} = 3\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$	A1	1.1	
			[3]		
3	(i)	Use Hooke's law: $T = \frac{\lambda e}{l} = \frac{29.4 \times 0.3}{0.7} = 12.6$	M1	3.4	Use of Hooke's law
		Tension is 12.6 N	A1	1.1	Correct answer
			[2]		
3	(ii)	Let θ be angle between each string and	M1	3.4	Resolve vertically
		vertical, then $2T\cos\theta = Mg$			
		$M = \frac{2 \times 12.6 \times 0.6}{2 \times 12.6 \times 0.6}$	M1	1.1a	Substitution
		$M = {9.8}$			
		=1.54	A1	1.1	
			[3]		

	Questi	on	Answer	Marks	AOs	Gui	dance
4	(i)		Conservation of energy:	M1	3.4	Using conservation of energy or	
			$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mga(1-\cos\theta)$			work-energy equation	
			$v^2 = u^2 + 2ga(1 - \cos\theta) \text{ AG}$	A1	1.1	Correct use of c.o.e. leading to	
			gav visat,			given answer	
				[2]			
4	(ii)		N2L: $R = mg \cos \theta - \frac{mv^2}{a}$	B1	3.4	Clearly shown	N2L is Newton's second law
			a				
			$= mg\cos\theta - \frac{m}{a}\left(u^2 + 2ga(1-\cos\theta)\right)$				
			$R = mg(3\cos\theta - 2) - \frac{mu^2}{a}. \text{ AG}$	A1	1.1		
			a		. 5		
				[2]			
4	(iii)		Use $R = 0$, $\cos \theta = \frac{3}{4}$ $u = \frac{1}{2} \sqrt{ga}$	M1	3.1b	Both used	
			4			>	
			$u = \frac{1}{2} \sqrt{ga}$	A1	1.1		
			2 ***				
				[2]			

	Questic	on	Answer	Marks	AOs	Guidance
5	(i)		Let θ = angle between AR and vertical and			
			α = angle between BR and vertical			
			$\cos \theta = \frac{4}{5}$ $\cos \alpha = \frac{5}{13}$ or equivalent	B1	1.1	
			$T\cos\theta = T\cos\alpha + 0.27g$	M1	3.3	Resolve vertically
				A1	2.1	
			Substitute to give $T = 6.37$ AG	A1	1.1	
				[4]		
	(ii)		$T\sin\theta + T\sin\alpha = \frac{0.27v^2}{1.2}$	M1	3.3	N2L in radial direction
			$1 \sin \theta + 1 \sin \alpha - \frac{1.2}{1.2}$	A1	1.1	
			Solve: $v = 6.57$	M1	3.4	Eliminate
			The speed is 6.57 m s ⁻¹	A1	1.1	
				[4]		
6	(i)		Dimensions of $mgh\cos\theta = ML^2T^{-2}$	B1	1.1a	
			Dimensions of $\omega = T^{-1}$	B 1	1.1	
			Use dim $I = \dim E/\dim (\omega^2)$	M1	1.1	Equate dimensions
			$Dim I = ML^2$	A1	2.1	
				[4]		
6	(ii)		$T = \left(ML^2\right)^{\alpha} \left(MLT^{-2}\right)^{\beta} L^{\gamma}$	M1	3.3	Write equation in terms of
						dimensions
			Equate powers:	M1	1.1	Apply standard method
			Solve: $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{2}$, $\gamma = -\frac{1}{2}$	A1	1.1	
			Solve: $\alpha = \frac{1}{\alpha}$ $\beta = -\frac{1}{\alpha}$ $\alpha = -\frac{1}{\alpha}$	A1	1.1	For one correct
			borrer a = 2, p = 2, 7 = 2	A1	1.1	All correct
				[5]		

Mark Scheme June 20XX

	Questior	n	Answer	Marks	AOs	Guid	lance
6	(iii)		$kI^{\alpha}g^{\beta}h^{\gamma}$ is constant				
			$T \alpha m^{\gamma} = m^{-\frac{1}{2}}:$	B1	2.2b	FT their power of <i>m</i>	
			T is proportional to $\frac{1}{\sqrt{m}}$				
			result compatible with experiment	[1]			
7	(i)		S 4 m 720 N 4 m 180 N $F = S$ $180 \times 4\cos 70^{\circ} + 720 \times x\cos 70^{\circ} = 8S\sin 70^{\circ}$	B1 M1	2.2a 3.3	Moments equation with at least	
			$(720 + 720x)\sin 20^\circ = 8F\cos 20^\circ$	A1 E1	1.1 2.1	two terms Two terms correct Correctly shown	
			$\Rightarrow F = 90(1+x)\tan 20^{\circ}$	[4]			

Y421

	Questic	n	Answer	Marks	AOs	Gui	dance
7	(ii)	(A)	All other terms constant so F increases as x	B1	2.4	Clearly explained	
	(11)	(-1)	increases.				
				[1]			
7	(ii)	(B)	So worst case is $x = 8$	B1	3.1b		
	(11)	(2)		B1	3.4		
			giving $F = 810 \tan 20^\circ$ with $R = 900$				
			Since $F \le F_{\text{max}} = \mu R$	M1	1.1		
			9104an 20° 04an 20°	A1	2.2a	Inequality clearly established	Set notation not required
			$\mu \ge \frac{810 \tan 20^{\circ}}{900} = \frac{9 \tan 20^{\circ}}{10} = 0.3275$				_
			900 10	[4]			
8	(2)		$5000 = F \times 2.5$	[4] M1	2.4	Han of D. E.	
0	(i)				3.4	Use of $P = Fv$	
			F = 2000. Now $R = F$ so R is 2000 N	A1	1.1		
0	(**)	(4)		[2]	22	II. Good and the second and the seco	
8	(ii)	(A)	$\frac{1}{2} \times 6000 \times 3^2 - \frac{1}{2} \times 6000 \times 2.5^2$	M1	3.3	Use of work-energy equation with	
			$\begin{vmatrix} 2 & 2 \\ = 8000 \times 10 - W \end{vmatrix}$	D1	1.1	all terms	KE is bigging and
			$=8000\times10-W$	B1	1.1	One KE term correct	KE is kinetic energy
				B1	3.4	Work done by driving force	
						correct	
			W = 80000 - 27000 + 18750 = 71750,	E1	1.1		
			so 71 750 J AG				
				[4]			
8	(ii)	(<i>B</i>)	Distance travelled = $\frac{2.5+3}{2} \times 10 = 27.5 \text{ m}$	B1	3.1b		
			Distance travelled $=\frac{1}{2} \times 10 - 27.5 \text{m}$				
			Hence $F \times 27.5 = 71750$	M1	2.2a	Work done is Fd	
			F = 2609.09so resistance is 2610 N (3 s.f.)	A1	1.1		
				[3]			

	Questio	n Answer	Marks	AOs	Gui	dance
8	(iii)	$3.25^2 = 3^2 + 200a$	M1	3.1b	Use <i>suvat</i> to find acceleration	
		Acceleration = $\frac{3.25^2 - 3^2}{200}$ = 0.0078125	A1	1.1		
		N2L up slope: $D - 2000 - 6000g \sin \alpha = 6000a$	M1	3.4	N2L used	
		D = 4986.875	A1	1.1		
		Max power required = 4986.875×3.25	M1	3.2a	Use of max speed	
		= 16.2 kW	A1	1.1		
		Max power available is now 16 kW so could not achieve16.2 kW	E 1	3.2a		
			[7]	A 1		
9	(i)	Perpendicular to line of centres, momentum of A unchanged, so A has no component of velocity, so A moves parallel to BA Taking L to R as positive	B1	3.4		
		NEL along line of centres:	M1	3.3	Use of NEL. Allow sign errors.	NEL is Newton's experimental law
		$V_A - V_B = e(v + v \cos 60^\circ)$			Must be $\frac{\text{speed of separation}}{\text{speed of approach}}$	
		$V_A - V_B = \frac{3v}{4}$	A1	1.1		
		PCLM $V_A + V_B = -v + v \cos 60^\circ = -\frac{v}{2}$	M1 A1	3.4 1.1	Use of PCLM. Allow sign errors	PCLM is Principle of conservation of linear momentum
		Solve: $V_A = \frac{1}{8}v$ $(V_B = -\frac{5}{8}v)$ so speed of A	A1	2.1		
		is $\frac{1}{8}v$ towards right				
			[6]			

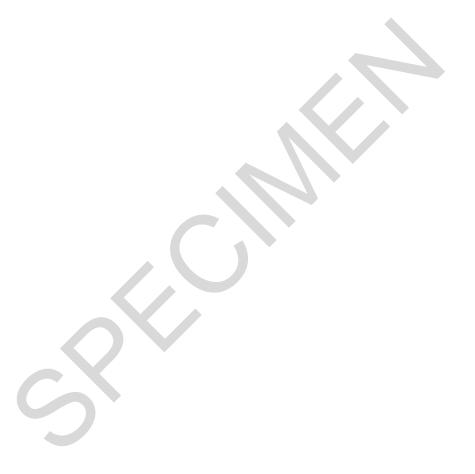
	Questic	on Answer	Marks	AOs	Guidance
9	(ii)	Perpendicular to line of centres, momentum	M1	3.4	Use of conservation of linear
		and so velocity of B unchanged:	A1	1.1	momentum for B
		$v\sin 60^{\circ} = \frac{\sqrt{3}}{2}v$			
		$1 \qquad 1 \qquad (\sqrt{3}v)^2$	M1	3.1b	Use of KE using both velocity
		Final KE of B = $\frac{1}{2}mV_B^2 + \frac{1}{2}m\left(\frac{\sqrt{3}v}{2}\right)^2 =$	A1	1.1	components
		$\frac{73}{128}mv^2$			
		Loss in KE = $2 \times \frac{1}{2} \times mv^2 - \frac{1}{2}m\left(\frac{v}{8}\right)^2 - \frac{73}{128}mv^2$	M1	1.1	All KE terms present
		$=\frac{27}{64}mv^2$	A1	1.1	
		Percentage loss = $\frac{27}{64} \times 100 = 42\%$	A1	2.1	
			[7]		
9	(iii)	The component of linear momentum of A	B1	3.5b	
		perpendicular to line of centres does not			
		change	[1]		
10	(i)	At projection			
		$\uparrow 65 \sin \alpha = 39 \text{ and } \rightarrow 65 \cos \alpha = 52$	B1	3.3	Both correct
		After bounce, LM conserved horizontally, so	E 1	3.4	Accept "horizontal speed not
		\rightarrow 52	D1	2.4	affected by impact"
		The vertical speed when it bounces is the same as at projection	B1	3.4	Use of NEL
		as at projection $NEL \uparrow \text{ so } 0.4 \times 39 = 15.6 \uparrow$	E 1	1.1	
		NEL 80 0.4 × 39 = 13.0	[4]	1.1	
			[4]		

	Questi	on	Answer	Marks	AOs	Guidance
10	(ii)		$\uparrow 0.1(15.6 - (-39)) = 5.46$	M1	1.2	Attempt at change in momentum.
			(' ')			Accept sign error
				A1	1.1	All signs correct
				[2]		
10	(iii)	(A)	$0 = 39T_1 - 5T_1^2$ so $T_1 = \frac{39}{5}$ AG	M1	3.4	Use of appropriate <i>suvat</i>
			$0 = 39I_1 - 3I_1$ so $I_1 - \frac{1}{5}$	A1	1.1	
				[2]		
10	(iii)	(<i>B</i>)	$T_n = (0.4)^{n-1} \times \frac{39}{5}$	M1	3.1b	Recognise geometric progression
			$I_n = (0.4)$ $\stackrel{\wedge}{\sim} \frac{1}{5}$	A1	2.2a	Correct answer
				[2]		
10	(iv)		GP with $a = \frac{39}{5}$ and $r = 0.4$: $S_{\infty} = \frac{a}{1 - r}$	M1	3.1b	Use of formula
			$\int_{0}^{\infty} \frac{1-r}{1-r}$			
			Total time = 13 s	A1	1.1	
			Total distance travelled while bouncing =			
			676 m	A1	3.2a	
				[3]		
10	(v)		Carries on after bouncing phase, with	B1	3.5b	
			horizontal velocity of 52 m s ⁻¹			
				[1]		
11	(i)		DR	7.1		
			$\overline{x} = 0$ by symmetry	B1	2.4	Symmetry needs to be stated
			$\overline{y}\sigma \int_{-1}^{1} \frac{1}{2} k (1 - x^{2}) dx = \sigma \int_{-1}^{1} \frac{1}{8} k^{2} (1 - 2x^{2} + x^{4}) dx$	M1	2.5	Use of correct formula
				M1	1.1	Reasonable attempt at integration
			$\begin{bmatrix} 1 & (& 1 &) \end{bmatrix}^1 \begin{bmatrix} 1 & (& 2 & 1 &) \end{bmatrix}^1$	A1	2.1	LHS
			$\overline{y} \left[\frac{1}{2} k \left(x - \frac{1}{3} x^3 \right) \right]_{-1}^{1} = \left[\frac{1}{8} k^2 \left(x - \frac{2}{3} x^3 + \frac{1}{5} x^5 \right) \right]_{-1}^{1}$	A1	1.1	RHS
				M1	1.1	Substitute limits
			$\frac{2}{3}k\overline{y} = \frac{2}{15}k^2: \overline{y} = \frac{1}{5}k AG$	A1	1.1	
				[7]		

Y421 Mark Scheme June 20XX

	Question		Answer	Marks	AOs	Guidance
11	(ii)		Let $X = XG$ be distance of com from CD			
			$2\left(\frac{1}{2}\right) + \frac{2}{2}k\left(1 + \frac{1}{5}k\right)$	M1	1.1	Moments
				A1	1.1	Numerator
			$X = \frac{(2) \cdot 3 \cdot (3)}{2 \cdot 2!}$	A1	1.1	Denominator
			$2+\frac{2}{3}k$			
			1 .	A1	2.1	
			$-\frac{1+\frac{1}{15}(10k+2k^2)}{2k^2+10k+15}$			
			= 			
			$\frac{1}{3}(6+2k)$ $10k+30$			
				[4]		

(Questic	n	Answer	Marks	AOs	Guidance
11	(iii)		Consider forces vertically: $3T = \left(2 + \frac{2k}{3}\right)g$	B1	3.4	
			Take moments about <i>D</i> :	M1	3.1b	Take moments: all terms present
			$2T = \left(2 + \frac{2k}{3}\right)g \times \frac{\left(2k^2 + 10k + 15\right)}{(10k + 30)}$			
				M1	1.1	Solving 3-term quadratic, dependent on previous M1
			Comment on taking positive root	B 1	2.3	
			$k = \frac{1}{6} \left(-5 + \sqrt{115} \right) = 0.9539$	A1	1.1	BC
			Alternative Methods			
			$T_D: T_A = 1:2 \Rightarrow DG: GA = 2:1$	M1		Use of ratio of moments
			$\Rightarrow DG = \frac{2}{3}$	A1		
			$2k^2 + 10k + 15$ 2	M1		Solving 3-term quadratic,
			$\frac{2k^2 + 10k + 15}{10k + 30} = \frac{2}{3}$			dependent on previous M1
			$\Rightarrow k = \frac{1}{6} \left(-5 + \sqrt{115} \right) = 0.9539$			
			Comment on taking positive root	B1 A1		
				[5]		


	Questi	on	Answer	Marks	AOs	Guidance
12	(i)		$x = 28\cos\alpha t y = 28\sin\alpha t - 4.9t^2$	B1	3.4	Both
			Use $t = \frac{x}{28\cos\alpha}$ to eliminate t from y giving $y = 28\sin\alpha \times \frac{x}{28\cos\alpha} - 4.9 \times \left(\frac{x}{28\cos\alpha}\right)^2$	M1	1.1	Process must be completed
			$y = \tan \alpha x - \frac{x^2}{160} \sec^2 \alpha$	A1	1.1	Simplification. May leave
			$y = \tan \alpha x - \frac{x^2}{160} \left(1 + \tan^2 \alpha \right)$	A1	2.1	$\frac{1}{\cos^2 \alpha}$ Using $\sec^2 \alpha = 1 + \tan^2 \alpha$
			$\Rightarrow \frac{x^2}{160} \tan^2 \alpha - x \tan \alpha + y + \frac{x^2}{160} = 0$			
			$\Rightarrow \tan^2 \alpha - \frac{160}{x} \tan \alpha + \frac{160y}{x^2} + 1 = 0$ AG	A1 [5]	1.1	
12	(ii)	(A)	We require the discriminant to be positive so	[2]		
			$\left(-\frac{160}{x}\right)^2 > 4\left(\frac{160y}{x^2} + 1\right)$	M1	2.2a	Finding the discriminant
			so $\frac{160^2}{4} > 160y + x^2$	A1	1.1	Obtain a ky term
			so $\frac{160^2}{4} > 160y + x^2$ and $y < 40 - \frac{x^2}{160}$ AG	E1	1.1	Completely shown
12	(ii)	(B)	Clearly indicates region below curve with R	[3] A1	1.1	
12	(11)		clearly indicates region below curve with K	[1]	1.1	

Y421 Mark Scheme June 20XX

Question		on	Answer	Marks	AOs	Guidance	
12	(iii)		Labels curve with S	B1	1.1		
			Labels region above curve with T	B1	1.1		
				[2]			
12	(iv)		Two real distinct roots means two distinct				
			values of $tan\alpha$ (and so α) and so				
			R: two distinct trajectories through points in	B 1	2.3		
			this region				
			T: no real roots means no trajectories go	B 1	2.2a		
			through those points				
			S: equal roots means there is a single	B1	2.2a		
			trajectory through a point on the curve				
				[3]			
12	(v)		Graph gives $x = 80$ when $y = 0$, so	B1	3.5a	Reason must be seen	
			No, because model does not take air resistance				
			into account which would slow it down; or				
			Yes, according to the model				
				[1]			

Question	AO1	AO2	AO3(PS)	AO3(M)	Totals
1	4	0	0	0	4
2	2	0	0	1	3
3i	1	0	0	1	2
3ii	2	0	0	1	3
4i	1	0	0	1	2
4ii	1	0	0	1	2
4iii	1	0	1	0	2
5i	2	1	0	1	4
5ii	2	0	0	2	4
6i	3	1	0	0	4
6ii	4	0	0	1	5
6iii	0	1	0	0	1
7i	1	2	0	1	4
7iiA	0	1	0	0	1
7iiB	1	1	1	1	4
8i	1	0	0	1	2
8ii	3	1	1	2	7
8iii	3	0	3	1	7
9i	2	1	0	3	6
9ii	4	1	1	1	7
9iii	0	0	0	1	1
10i	1	0	0	3	4
10ii	2	0	0	0	2
10iiiA	1	0	0	1	2
10iiiB	0	1	1	0	2
10iv	1	0	2	0	3
10v	0	0	0	1	1
11i	4	3	0	0	7
11ii	3	1	0	0	4
11iii	2	1	1	1	5
12i	3	1	0	1	5
12iiA	2	1	0	0	3
12iiB	1	0	0	0	1
12iii	2	0	0	0	2
12iv	0	3	0	0	3
12v	0	0	0	1	1
Totals	60	21	11	28	120

BLANK PAGE

BLANK PAGE

BLANK PAGE

