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INSTRUCTIONS  
• Use black ink. HB pencil may be used for graphs and diagrams only. 
• Complete the boxes provided on the Printed Answer Booklet with your name, centre number 

and candidate number. 
• Answer all the questions. 
• Write your answer to each question in the space provided in the Printed Answer 

Booklet. 
• Additional paper may be used if necessary but you must clearly show your candidate 

number, centre number and question number(s). 
• Do not write in the bar codes. 
• You are permitted to use a scientific or graphical calculator in this paper.  
• Final answers should be given to a degree of accuracy appropriate to the context. 
 
COMPUTING RESOURCES  
• Candidates will require access to a computer with a computer algebra system, a spreadsheet, 

a programming language and graph-plotting software throughout the examination. 
 

INFORMATION 
• The total mark for this paper is 60. 
• The marks for each question are shown in brackets [ ]. 
• You are advised that an answer may receive no marks unless you show sufficient detail of the 

working to indicate that a correct method is used. You should communicate your method with 
correct reasoning. 

• The Printed Answer Book consists of 12 pages. The Question Paper consists of 8 pages. 
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Answer all the questions. 
 

1  A family of curves has polar equation cos , 0nr n
n
T T S§ · � d¨ ¸
© ¹

, where n is a positive even integer. 

 
  (i)  (A) Sketch the curve for the cases n = 2 and n = 4.   [2] 
    

 (B) State two points which lie on every curve in the family.   [1] 
     

 (C) State one other feature common to all the curves.  [1] 
 

   (ii)  (A) Write down an integral for the length of the curve for the case n = 4.   [2] 
 
   (B) Evaluate the integral.  [2] 
  

(iii)  (A) Using t T  as the parameter, find a parametric form of the equation of the family of curves.  [1] 

 (B) Show that 
� � � �
� � � �

sin sin cos cosd
d sin cos cos sin

t tt ty n n
t tx t tn n

�
 

�
.   [2] 

 
(iv) Hence show that there are 1n�  points where the tangent to the curve is parallel to the y-axis. [6] 
 
(v)  By referring to appropriate sketches, show that the result in part (iv) is true in the case n = 4. [2] 
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2          (i) (A) Create a program to find all the solutions to 2 1(mod )x p{ �  where 0 x p�d .   

  Write out your program in full in the Printed Answer Booklet. [5] 
 
  (B) Use the program to find the solutions to 2 1(mod )x p{ �  for the primes  

x p = 809,  
x p = 811 and  
x p = 444 001.  [3] 

 
     (ii) State Wilson’s Theorem. [1] 
 
 (iii) The following argument shows that 2(4 )! ((2 )!) (mod )k k p{  for the case 4 1p k � . 

 
    (4 )! 1 2 3 ... (2 1) 2 (2 1) (2 2) ... (4 1) 4 (mod )k k k k k k k p{ u u u u � u u � u � u u � u    (1) 

                        1 2 3 ... (2 1) 2 ( 2 ) ( (2 1)) ... ( 2) ( 1)(mod )k k k k p{ u u u u � u u � u � � u u � u �   (2) 
 

                          2((2 )!) (mod )k p{    (3) 
 
   (A) Explain why (2 2)k � can be written as ( (2 1))k� �  in line (2).   [1] 
 

   (B) Explain how line (3) has been obtained.  [2] 
 
 (C) Explain why, if p is a prime of the form 4 1p k � , then 2 1(mod )x p{ �  will have at least one 

solution.  [1] 
 

 (D) Hence find a solution of 2 1 (mod29)x { � . [2] 
 

(iv) (A) Create a program that will find all the positive integers n, where n < 1000, such  
  that 2( 1)! 1 (mod )n n� { � . Write out your program in full.  [3] 
 

 (B) State the values of n obtained.   [2] 
 

 (C) A Wilson prime is a prime p such that 2( 1)! 1(mod )p p� { � . Write down all the Wilson primes p 
where p < 1000.  [1] 
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3  This question explores the family of differential equations d 1 2
d
y ax y
x
 � �  for various values of the 

parameter a. Fig. 3 shows the tangent field in the case a = 1. 
 

 
Fig. 3 

  
  (i)  (A) Sketch the tangent field in the case 2a  � .  [2] 

 
(B) Explain why the tangent field is not defined for the whole coordinate plane.   [1] 

 

  (C) Give an inequality which describes the region in which the tangent field is defined.   [1] 

   

  (D) Find a value of a such that the region for which the tangent field is defined includes the entire              
  x-axis.  [1] 
 

  (ii) (A) For the case 1a  , with 1y   when 0x  , construct a spreadsheet for the Runge-Kutta method of 

order 2 with formulae as follows, where df( , )
d
yx y
x

 . 

 

       

    
   State the formulae you have used in your spreadsheet.  [3] 

 
(B) Use your spreadsheet to obtain the value of y correct to 4 decimal places when 1x   for  

x h = 0.1  
and  
x h = 0.05. [2] 
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(iii) (A) For the case 0a   find the analytical solution that passes through the point (0, 1).   [1] 
 

 (B) Verify that the solution in part (iii) (A) is a solution to the differential equation.   [2] 
 

 (C) Use the solution in part (iii) (A) to find the value of y correct to 4 decimal places when 1x  . [1] 
 

 (iv) (A) Verify that 
2 1

2 8 2
a ay x � � �  is a solution for all cases when 0a d .  [2] 

 
  (B) Show that this is the only straight line solution in these cases. [4] 

 
 

END OF QUESTION PAPER 
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