

GCE

Further Mathematics B (MEI)

Y435/01: Extra pure

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in scoris	Meaning
√and ≭	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0,M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
Е	Explanation mark 1
SC	Special case
^	Omission sign
MR	Misread
BP	Blank page
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Y435/01 Mark Scheme October 2021

Q	uestio	n	Answer	Marks	AO	Guidance		
1	(a)		DR $z = f(2, y) = 8 + 4y - 2y^2$	M1	1.1	Deriving correct equation of graph of section.		
			= $10 - 2(y - 1)^2 \Rightarrow \max \text{ at } (1, 10) \text{ or } (2, 1, 10)$	A1	1.1	Finding TP by completing the square, use of "- <i>b</i> /2 <i>a</i> ", differentiation or mid-point between roots.	Working must be shown.	
				B1	1.1		Condone incorrect variable names on axes (eg x - y for y - z).	
			Crossing z-axis at 8, y-axis at $1 \pm \sqrt{5}$ and showing (1,10) as a max	A1	1.1	Coordinates of intercepts and max must be shown on graph or apparent in working. Allow decimal values (awrt –1.2 and 3.2) for the <i>y</i> -intercepts.	z intercept must be shown as positive and max in 1st quadrant. However, scale is unimportant except that the negative y-intercept must be closer to O than the positive one.	
				[4]				

					Γ	
(b))	$\frac{\partial z}{\partial x} = 3x^2 + 2xy$	B1	1.1		
		$\frac{\partial z}{\partial y} = x^2 - 4y$	B1	1.1		
		$\frac{\partial z}{\partial x} = 0$ $\Rightarrow 3x^2 + 2xy = 0$ $\Rightarrow \text{ either } x = 0 \text{ or } x = -\frac{2}{3}y \text{ or } y = -\frac{3}{2}x$	M1	1.1	Setting a partial derivative to 0 and deriving condition(s) on <i>x</i> and/or <i>y</i> .	Or $\frac{\partial z}{\partial y} = 0$ $\Rightarrow y = \frac{1}{4}x^2 \text{ or } x^2 = 4y \text{ or } x = \pm 2\sqrt{y}$
		$\frac{\partial z}{\partial y} = 0, \ x = -\frac{2}{3}y \Rightarrow 4y = \frac{4}{9}y^2 \Rightarrow y = 9$	M1	1.1	Substituting condition into other partial derivative equation to derive a non-zero value for x or y . $\frac{\partial z}{\partial y} = 0, \ y = -\frac{3}{2}x$ $\Rightarrow x^2 + 6x = 0 \Rightarrow x = -6$	$\frac{\partial z}{\partial x} = 0, \ y = \frac{1}{4}x^2$ $3x^2 + \frac{1}{2}x^3 = 0 \Rightarrow x = -6$ or $\frac{\partial z}{\partial x} = 0, \ x = \pm 2\sqrt{y}$ $12y \pm 4y^{\frac{3}{2}} = 0 \Rightarrow y = 9$
		x = -6 z = -54 so $(-6, 9, -54) or x = 0 \Rightarrow y = 0 so (0, 0, 0)$	A1 A1 A1	1.1 1.1 1.1	From correct working only. Derived from both $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$ (could be by observation).	y = 9 If an extra SP is presented then A1 can be awarded for either SP correct and then A0 .

subgroup of G must be a factor of 8 and 6 is not a factor of 8 (or an group of order 8) must be 1, does not he can be a factor of 8 2 or 4 (or 8)" or "order of any subgroup must be a factor of the not a f	ced, Lagrange's Theorem have to be quoted provided applied. So B1 for eg "6 is
factor of 8". of G of or Lagrange	or of 8 so by Lagrange's there can be no subgroup rder 6" but B0 for eg "By 's Theorem there can be oup of G of order 6".
2 (b) g^2 (or g^6) B1 2.2a May see e and/or thr multiplica	eg gg or g°g used here roughout. Allow any ative notation and any or a binary operation.
	es need not be seen again es need not be seen again
Alternative method:	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$g \leftrightarrow 1, g^2 \leftrightarrow 2, g^3 \leftrightarrow 3, g^4 \leftrightarrow 4, g^5 \leftrightarrow 5, g^6 \leftrightarrow 6, g^7 \leftrightarrow 7$ A1 Completing the specification of any one isomorphism	
	es need not be seen again
[4]	

3	(a)	$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 3 & 0 \\ 0 & 2 - \lambda & 2 \\ 1 & 3 & 4 - \lambda \end{vmatrix}$ $= (3 - \lambda)[(2 - \lambda)(4 - \lambda) - 2 \times 3] - 3(0 - 2 \times 1) \text{ oe}$	M1 M1	1.1a 1.1	Formation of appropriate determinant soi. Attempt to expand determinant. Allow one slip.	May see eg expansion by 1st col: $(3-\lambda)[(2-\lambda)(4-\lambda)-6]+1(6-0)$ Or other formulation eg:
3	(b)	$= -\lambda^3 + 9\lambda^2 - 20\lambda + 12 = 0$ 1, 2 and 6 substituted into (a) equation to verify	A1 [3] B1	1.1	Must be an equation. ISW. eg checking trace is insufficient.	$((3-\lambda)(2-\lambda)(4-\lambda)+6+0) - (0+6(3-\lambda)+0)$
	(0)	1, 2 and 6 substituted into (a) equation to verify	[1]	1.1	eg enceking trace is insufficient.	
3	(c)	3a + 3b = a or 2a or 6a and $2b + 2c = b \text{ or } 2b \text{ or } 6b$ and $a + 3b + 4c = c \text{ or } 2c \text{ or } 6c$ $\lambda = 1$: $2a = -3b$, $b = -2c$ or $\lambda = 2$: $c = 0$, $a = -3b$ or $\lambda = 6$: $a = b$, $c = 2b$	M1	1.1	Correctly forming 3 equations in 3 unknowns for one of their eigenvalues. May see explicit choice of eg $c = 1$ to form 3 equations in 2 unknowns. Attempt to solve equations for at least one of their eigenvalues leading to two unknowns in terms of 3^{rd} .	Or formation of appropriate $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 4 - \lambda & -4 \\ 0 & -1 & 3 - \lambda \end{vmatrix}$. Attempt to expand determinant (might be in terms of λ) eg $\begin{pmatrix} 8 - 7\lambda + \lambda^2 \\ 6 - 2\lambda \\ 2 \end{pmatrix}$. Can be inferred by
		$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	A1	1.1	or any non-zero multiple.	2 correct coefficients.
		$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	A1 [4]	1.1	or any non-zero multiple.	

3	(d)	(3 -3 1)	M1	3.1a	Forming matrix of their	
		-2			eigenvectors, E.	
		$\begin{bmatrix} 3 & 3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$				
		` '	A1FT	3.1a	BC. Finding inverse of their	May be in decimal form:
		$\begin{pmatrix} 3 & -3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -2 & -6 & 4 \end{pmatrix}$	AILI	J.14	matrix of eigenvectors.	(-0.2 -0.6 0.4)
		$\begin{bmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}^{-1} = \frac{1}{10} \begin{bmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{bmatrix} $ oe			matrix of eigenvectors.	0.5 0.5 0.5
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{bmatrix} -0.5 & -0.5 & 0.5 \\ 0.1 & 0.3 & 0.3 \end{bmatrix}$
						(0.1 0.3 0.3)
		$(1 \ 0 \ 0)^n \ (1 \ 0 \ 0)$	B1	3.1a	Matrix of eigenvalues must be	
		$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} $			consistent with matrix of	
					eigenvectors. Allow 1 ⁿ .	
		$ \begin{bmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{bmatrix} \frac{1}{10} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} $	M1	3.1a	6	
		$\begin{vmatrix} -2 & 1 & 1 & 0 & 2^n & 0 & \frac{1}{2} & -5 & -5 & 5 \end{vmatrix}$			if Λ^n incorrect or uncalculated but	
		$\begin{vmatrix} 1 & 0 & 2 \end{vmatrix} \begin{vmatrix} 0 & 0 & 6^n \end{vmatrix} \begin{vmatrix} 10 \end{vmatrix} \begin{vmatrix} 1 & 3 & 3 \end{vmatrix}$			eigenvectors must be in same	
					order as eigenvalues.	
		(1 0 0)	M1	1.1	Proper attempt to multiply either	$\begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} =$ or $\begin{pmatrix} 3 & -3 \times 2^n & 6^n \\ -2 & 2^n & 6^n \\ 1 & 0 & 2 \times 6^n \end{pmatrix}$
		$\begin{bmatrix} 1 & 0 & 0 \\ -2 & -6 & 4 \end{bmatrix}$	IVII	1.1	the first two or the last two (of 3)	$\begin{pmatrix} 3 & -3 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 \end{pmatrix}$
					in the correct order (with or	$\begin{vmatrix} -2 & 1 & 1 & 0 & 2^n & 0 \end{vmatrix} = \begin{vmatrix} -2 & 1 & 1 & 0 \end{vmatrix}$
		$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 6^n \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} = $			without $\frac{1}{10}$).	$\begin{pmatrix} 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 6^n \end{pmatrix}$
					10 /	or $(3 3 2^n 6^n)$
		$ \begin{bmatrix} -2 & -6 & 4 \\ -5 \times 2^n & -5 \times 2^n & 5 \times 2^n \end{bmatrix} $				$3 - 3 \wedge 2 = 0$
						$\begin{bmatrix} -2 & 2^n & 6^n \end{bmatrix}$
		$\left(\begin{array}{ccc} 6^n & 3 \times 6^n & 3 \times 6^n \end{array} \right)$				$\left(\begin{array}{ccc} 1 & 0 & 2 \times 6^n \end{array}\right)$
		(3 -3 1)(-2 -6 4)	A1	1.1	or	
		$ \frac{1}{10} \begin{pmatrix} 3 & -3 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 \times 2^n & -5 \times 2^n & 5 \times 2^n \\ 6^n & 3 \times 6^n & 3 \times 6^n \end{pmatrix} = $			$(3 -3 \times 2^n - 6^n)(2 - 6 - 4)$	
		$\begin{bmatrix} 10 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 6^n & 3 \times 6^n & 3 \times 6^n \end{bmatrix}$			$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ $\begin{bmatrix} 2^n \\ -2 \end{bmatrix}$ $\begin{bmatrix} 6^n \\ -5 \end{bmatrix}$ $\begin{bmatrix} -5 \\ -5 \end{bmatrix}$	
		$(-6+15\times2^n+6^n-18+15\times2^n+3\times6^n-12-15\times2^n+3\times6^n)$			$\begin{bmatrix} \frac{1}{10} \begin{pmatrix} 3 & -3 \times 2^n & 6^n \\ -2 & 2^n & 6^n \\ 1 & 0 & 2 \times 6^n \end{pmatrix} \begin{pmatrix} -2 & -6 & 4 \\ -5 & -5 & 5 \\ 1 & 3 & 3 \end{pmatrix} =$	
		$\frac{1}{10} \begin{pmatrix} -6+15 \times 2^{n} + 6^{n} & -18+15 \times 2^{n} + 3 \times 6^{n} & 12-15 \times 2^{n} + 3 \times 6^{n} \\ 4-5 \times 2^{n} + 6^{n} & 12-5 \times 2^{n} + 3 \times 6^{n} & -8+5 \times 2^{n} + 3 \times 6^{n} \\ -2+2 \times 6^{n} & -6+6^{n+1} & 4+6^{n+1} \end{pmatrix}$				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			etc.	
)			Condone 6×6^n unsimplified.	
			[6]			
Ц			r _A 1			

	1	T T			Γ=	T
4	(a)	CF: $u_{n+2} - 3u_{n+1} - 10u_n = 0$ and $u_n = \alpha r^n$	M1	1.1a	Deriving the auxiliary equation	
		$\Rightarrow r^2 - 3r - 10 = 0$			(allow one sign error).	
		$\Rightarrow r = 5 \text{ or } r = -2$	A1FT	1.1	FT correct roots of their AE to	Condone missing brackets around
		CF is $\alpha 5^n + \beta (-2)^n$			form CF (do not ISW).	−2 unless misused.
		, , ,				
		Trial function: $u_n = an + b$	B1	1.1a	Correct form.	Other forms eg $an^2 + bn + c$ are
						allowable provided $a = 0$ derived.
		a(n+2) + b - 3[a(n+1) + b] - 10(an+b)	M1	1.1	Substituting their form correctly	-
		= 24n - 10			into recurrence relation.	
		$\Rightarrow (a-3a-10a)=24$	M1	1.1	Deriving two equations in a and b	
		and $2a + b - 3a - 3b - 10b = -10$			using a correct method (eg	
					comparing coefficients)	
		a = -2 and $b = 1$ so GS is	A1	1.1	Full form of GS, including $u_n =$,	cao
		$u_n = 1 - 2n + \alpha 5^n + \beta (-2)^n$			must be seen.	
			[6]			
4	(b)	Either: $n = 0 = 1 + \alpha + \beta = 6$	M1	1.1	Substituting $n = 0$ or $n = 1$ in their	This mark can be awarded if one of
		or: $n = 1 = > 1 - 2 + 5\alpha - 2\beta = 10$			GS to derive an equation in $\alpha \& \beta$.	their equations is wrong.
		$\alpha + \beta = 5$ and $5\alpha - 2\beta = 11$	M1	1.1	Deriving 2 equations from	Attempt to solve can be implied by
		$=> 2\alpha + 2\beta = 10 => 7\alpha = 21$			substituting $n = 0 \& 1$, at least one	correct answer or valid algebra but
		,			correct for their GS, and	incorrect answer with no working
					attempting to solve.	M0
		$\alpha = 3$ and $\beta = 2$ so	A1FT	1.1	FT from their GS. Allow non-	
		$u_n = 1 - 2n + 3 \times 5^n + 2 \times (-2)^n$			embedded values if GS seen in (a).	
					Do not ISW.	
			[3]			
4	(c)	From recurrence relation:	B1	2.5	Both expressions properly seen (ie	
		$u_2 = 3u_1 + 10u_0 + 24 \times 0 - 10$			it must be clear that candidates are	
		$= 3 \times 10 + 10 \times 6 - 10 = 80$			correctly using two different	
		From particular solution:			methods to find u_2).	
		$u_2 = 1 - 2 \times 2 + 3 \times 5^2 + 2 \times (-2)^2$				
		=1-4+75+8=80				
			[1]			

Y435/01	Mark Scheme	October 2021
---------	-------------	--------------

4	(d)	$v_n = \frac{1-2n}{p^n} + 3\left(\frac{5}{p}\right)^n + 2\left(\frac{-2}{p}\right)^n$	M1	3.1a	Writing v_n in a form which enables the limit to be deduced.	
		If $ p < 5$ then $v_n \to \infty$ while if $ p > 5$ then $v_n \to 0$ as $n \to \infty$	В1	2.1	Convincing argument. FT for GS of the form: $c - dn + \alpha s^n + \beta t^n$ (where $ s > t $).	At most one of c and d is 0. s and t are not equal and both not 0. Both α and β are not 0. Either $ s > 1$ or $ t > 1$ (or both).
		p = 5 $q = 3$	A1 A1 [4]	2.2a 2.2a	FT. $p = s$ (must be a number).	A0 If $s = -t$. A0 If $s = -t$. If M0 then SC2 for $p = 5$, $q = 3$.

5	$\frac{\partial g}{\partial x} = 2$	$x \text{ or } \frac{\partial g}{\partial y} = 2y \text{ or } \frac{\partial g}{\partial z} = 4z$	M1	3.1a	$g(x, y, z) = x^2 + y^2 + 2z^2$ and surface is $g = 126$. Finding one	May be rewritten as $z = f(x, y) = \sqrt{63 - \frac{1}{2}y^2 - \frac{1}{2}x^2}$
		,			correct partial derivative.	but condone ±.
	$\nabla g = $	$\begin{vmatrix} 2x \\ 2y \\ 4z \end{vmatrix}$ is the normal to the tangent plane at	A1	3.1a	Finding the normal vector.	$\left(-\frac{x}{2z}\right)$
	each po	4z				$\nabla g = \begin{pmatrix} -\frac{x}{2z} \\ -\frac{y}{2z} \\ -1 \end{pmatrix} \text{ oe }$
	each po	onit.				$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
		(2x)(0)	M1	3.1a	Dotting normal with normal to <i>x-y</i> plane.	
	$\nabla g.\mathbf{n} =$	$\begin{pmatrix} 2x \\ 2y \\ 4z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 4z$			prune.	
	$\left \begin{array}{c} 2x \\ 2y \end{array}\right $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cos \frac{\pi}{3}$	M1	2.2a	Expressing dot product in other form using correct value of angle.	
	$=\begin{bmatrix} 2y \\ 4z \end{bmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} \cos \frac{\pi}{3} \end{pmatrix}$				
	$=\sqrt{(2x)}$	$(x)^{2} + (2y)^{2} + (4z)^{2} \times 1 \times \frac{1}{2}$	M1	1.1	Using $\cos \frac{\pi}{3} = \frac{1}{2}$, forming	
	$=2\sqrt{x^2}$	$\frac{1}{(x^2 + y^2 + 4z^2)} \times \frac{1}{2} = \sqrt{126 - 2z^2 + 4z^2}$			magnitude of both normals and reducing to form $\sqrt{a+bz^2}$ oe	or $\sqrt{a+bx^2+by^2}$ (could see eg
	$=\sqrt{126}$	<i>L</i>			(could be done after squaring).	$x^2 + y^2 = 108$ oe after equating to
	$\sqrt{126}$	$\sqrt{2z^2} = 4z \Rightarrow 126 + 2z^2 = 16z^2$	A1	3.2a	Not \pm in final answer.	4z and eliminating z).
		$z^2 = 126 \Rightarrow z^2 = 9 \Rightarrow z = \pm 3$				
	$z \ge 0$	$\Rightarrow z = 3$ which is the equation of Π .				
			[6]			

6	(a)		1 1 1	M1	2.1	Correct statement that given series	
			$\frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots$			is less than an infinite GP (could	
						be eg $\frac{1}{a} + \frac{1}{a^2} + \dots$ or $\frac{1}{3} + \frac{1}{3^2} + \dots$).	
			$<\frac{1}{(q+1)} + \frac{1}{(q+1)^2} + \frac{1}{(q+1)^3} + \dots$			$\frac{1}{q} = \frac{1}{q^2} + \dots + \frac{1}{3} = \frac{1}{3} $	
			$(q+1)$ $(q+1)^2$ $(q+1)^3$				
				A1	2.1	FT on their $\frac{a}{1-r}$.	
			$=\frac{q+1}{q+1}$			1-r	
			$= \frac{\frac{1}{q+1}}{1 - \frac{1}{q+1}}$				
			q+1				
			_ 1 _1	A1	2.1	AG. Intermediate step must be	
			$=\frac{1}{q+1-1}=\frac{1}{q}$			seen.	
				[3]			
6	(b)		$q \ge 1 \Rightarrow \frac{1}{q} \le 1$	M1	2.2a		
			$q \ge 1 \Rightarrow - \le 1$				
			1	A1	2.2a	AG. $S > 0$ must be stated but need	1 1
			But $S < \frac{1}{S} \Rightarrow S < 1$; clearly $S > 0$ so $0 < S < 1$ so			not be justified.	Since $0 < \frac{1}{2} \le 1$ and $S < \frac{1}{2}$ then
			$S otin \square$			3	q q $0 < S < 1$ and $\therefore S \notin \square$.
			<i>S</i> ∉□ .	[2]			$0 < S < 1$ and $\therefore S \notin \square$.
6	(c)			[2] M1	3.1a	Multiplying both sides by <i>q</i> ! No	
0	(C)		$e = \sum_{r=0}^{\infty} \frac{1}{r!} = \frac{p}{q} \Rightarrow eq! = \sum_{r=0}^{\infty} \frac{q!}{r!} = p(q-1)!$	1411	J.1a	need to mention $q \ge 1$ in this part.	
			$\sum_{r=0}^{\infty} r! q \qquad \sum_{r=0}^{\infty} r! \qquad 1 $			need to inention $q = 1$ in this part.	
			$\sum_{n=0}^{\infty} a! \sum_{n=0}^{\infty} a!$	M1	2.1	Rewriting to a form in which it is	
			$\therefore p(q-1)! = \sum_{r=0}^{\infty} \frac{q!}{r!} = \sum_{r=0}^{q} \frac{q!}{r!} + \sum_{r=q+1}^{\infty} \frac{q!}{r!}$			clear that every term on both sides,	
			, , , , , , , , , , , , , , , , , , , ,			except S, is an integer.	
			$=q!+q!+\frac{q!}{2!}++\frac{q!}{q!}+S$				
			q!				
			$=2q!+q(q-1)\times 3+q(q-1)\times 4++1+S$				
			$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	A1	3.2a	AG	
			$p(q-1)!$ and $q!+q!+\frac{q!}{2!}++1$ are all integers				
L	L	L	but S is not which is a contradiction.		L		

Y435/01 N	Mark Scheme	October 2021
-----------	-------------	--------------

	Alternative Method: $S = \sum_{r=q+1}^{\infty} \frac{q!}{r!}$	M1	Expressing <i>S</i> as an infinite sum in terms of factorials.	
	$S = q! \sum_{r=0}^{\infty} \frac{1}{r!} - \sum_{r=0}^{q} \frac{q!}{r!} = q! e - q! - \sum_{r=1}^{q} \frac{q!}{r!}$	M1	Rewriting to a form in which it is clear that every term on both sides, except <i>S</i> , is an integer.	
	$= p(q-1)! - q! - \sum_{r=1}^{q} q(q-1)(q-r+1)$ since $1 \le r \le q$ $p(q-1)!, q! \text{ and } q(q-1)(q-r+1) \text{ are all}$	A1	AG	
 	integers but <i>S</i> is not which is a contradiction.	[3]	 	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

