

# **GCE**

**Further Mathematics B (MEI)** 

Y435/01: Extra pure

Advanced GCE

**Mark Scheme for November 2020** 

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

# **Text Instructions**

# **Annotations and abbreviations**

| Annotation in scoris       | Meaning                                                                                                                                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| √and <b>≭</b>              |                                                                                                                                                                                                                                      |
| BOD                        | Benefit of doubt                                                                                                                                                                                                                     |
| FT                         | Follow through                                                                                                                                                                                                                       |
| ISW                        | Ignore subsequent working                                                                                                                                                                                                            |
| M0,M1                      | Method mark awarded 0, 1                                                                                                                                                                                                             |
| A0, A1                     | Accuracy mark awarded 0, 1                                                                                                                                                                                                           |
| B0,B1                      | Independent mark awarded 0, 1                                                                                                                                                                                                        |
| Е                          | Explanation mark 1                                                                                                                                                                                                                   |
| SC                         | Special case                                                                                                                                                                                                                         |
| ۸                          | Omission sign                                                                                                                                                                                                                        |
| MR                         | Misread                                                                                                                                                                                                                              |
| BP                         | Blank page                                                                                                                                                                                                                           |
| Highlighting               |                                                                                                                                                                                                                                      |
|                            |                                                                                                                                                                                                                                      |
| Other abbreviations in     | Meaning                                                                                                                                                                                                                              |
| mark scheme                |                                                                                                                                                                                                                                      |
| E1                         | Mark for explaining a result or establishing a given result                                                                                                                                                                          |
|                            |                                                                                                                                                                                                                                      |
| dep*                       | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.                                                                                                                                     |
| dep*<br>cao                |                                                                                                                                                                                                                                      |
| •                          | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only  Or equivalent                                                                                                 |
| cao                        | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only Or equivalent Rounded or truncated                                                                             |
| cao<br>oe                  | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only  Or equivalent  Rounded or truncated  Seen or implied                                                          |
| cao<br>oe<br>rot           | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only Or equivalent Rounded or truncated                                                                             |
| cao<br>oe<br>rot<br>soi    | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only  Or equivalent  Rounded or truncated  Seen or implied                                                          |
| cao oe rot soi www AG awrt | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given Anything which rounds to |
| cao oe rot soi www AG      | Mark dependent on a previous mark, indicated by *. The * may be omitted if only previous M mark.  Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given                          |

# Subject-specific Marking Instructions for AS Level Mathematics B (MEI)

a Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

### Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

#### M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

#### Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

### В

Mark for a correct result or statement independent of Method marks.

### Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep\*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case, please escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
  - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such

cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

- When a value is **given** in the paper only accept an answer correct to at least as many significant figures as the given value.
- When a value is **not given** in the paper accept any answer that agrees with the correct value to **2 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.

NB for Specification A the rubric specifies 3 s.f. as standard, so this statement reads "3 s.f"

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g Rules for replaced work and multiple attempts:
  - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
  - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
  - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. E marks are lost unless, by chance, the given results are established by equivalent working. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" and "Determine. Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- if in any case the scheme operates with considerable unfairness consult your Team Leader.

| Q | Question                                                             | Answer                                                                                         | Marks     | AOs         | Guidance                                                         |                                                                                                                                                           |  |
|---|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------|-------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | $\det(\mathbf{A} - \lambda \mathbf{I})$ $\lambda^2 + \lambda - 6$    | $0 = \begin{vmatrix} -\lambda & 2\\ 3 & -1 - \lambda \end{vmatrix} = \lambda(1 + \lambda) - 6$ | M1        | 1.1a        | For ch eqn in any form                                           | Can be implied by correct evals Allow one sign error                                                                                                      |  |
|   | So the eiger                                                         | nvalues are 2 and –3                                                                           | <b>A1</b> | 1.1         | For both e-vals correct                                          |                                                                                                                                                           |  |
|   |                                                                      |                                                                                                | M1        | 1.1         | Either equation correct in any form FT                           |                                                                                                                                                           |  |
|   | $\Rightarrow x = y \Rightarrow$                                      | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$                                                         | A1        | 1.1         | Or any non-zero multiple                                         |                                                                                                                                                           |  |
|   | $e = -3: \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ $\Rightarrow 3x = -2$ |                                                                                                | A1<br>[5] | 1.1         | Or any non-zero multiple                                         | If each e-vec is not paired with its e-val (either explicitly or in the working) or if they are wrongly assigned then <b>SC1</b> if they are both correct |  |
|   |                                                                      |                                                                                                |           |             |                                                                  |                                                                                                                                                           |  |
| 2 | $t_1 = \frac{a}{(1+b)}$                                              | _ = 8 soi                                                                                      | B1        | 3.1a        | Using the initial condition to obtain an equation in $a$ and $b$ |                                                                                                                                                           |  |
|   | $t_{n+1} = \frac{t_n}{n+3}$                                          | $a \Rightarrow \frac{a}{(n+1+b)!} = \frac{a}{(n+3)(n+b)!}$                                     | M1        | 3.1a        | Substituting solution formula into recurrence relation           |                                                                                                                                                           |  |
|   |                                                                      | n+3=n+1+b                                                                                      | M1        | 1.1         | Cancelling $a$ and $(n + b)!$                                    |                                                                                                                                                           |  |
|   | => b = 2                                                             | [ 40 ]                                                                                         | A1        | 1.1<br>3.2a |                                                                  |                                                                                                                                                           |  |
|   | and $a = 8 \times 3$                                                 | $3! = 48 \left[ t_n = \frac{48}{(n+2)!} \right]$                                               | A1        | 3.4a        |                                                                  |                                                                                                                                                           |  |

[5]

| 2 | Alternative Method:                                            |      |      |                                                                                  |  |
|---|----------------------------------------------------------------|------|------|----------------------------------------------------------------------------------|--|
|   | $t_1 = \frac{a}{(1+b)!} = 8$ $t_2 = \frac{a}{(2+b)(1+b)!} = 2$ | M1   | 3.1a | Attempting to find two terms eg $t_1$ and $t_2$ or recognising a general pattern |  |
|   | Solving to give $a = 48$ , $b = 2$                             | A1A1 | 3.1a |                                                                                  |  |
|   | $t_{n+1} = \frac{48}{(n+2)!(n+3)}$                             | M1   | 1.1  | Using $t_{n+1} = \frac{t_n}{n+3}$ to verify solution                             |  |
|   | $t_{n+1} = \frac{48}{(n+3)!}$                                  | A1   | 3.2a | Completion                                                                       |  |
|   |                                                                | [5]  |      |                                                                                  |  |
|   |                                                                |      |      |                                                                                  |  |
|   |                                                                |      |      |                                                                                  |  |

|   |     |                                                                                                                  |            |     | 1                                                                                     |                                    |
|---|-----|------------------------------------------------------------------------------------------------------------------|------------|-----|---------------------------------------------------------------------------------------|------------------------------------|
| 3 | (a) | $u_n = kp^n \Longrightarrow p^2 - 4p + 5 \ [= 0]$                                                                | <b>M</b> 1 | 1.1 | Auxiliary equation                                                                    | One sign error                     |
|   |     | $=> p = 2 \pm i$                                                                                                 | <b>M1</b>  | 1.1 | BC. Solving their auxiliary                                                           |                                    |
|   |     | •                                                                                                                |            |     | equation                                                                              |                                    |
|   |     | $r = \sqrt{5}$ , $\tan \theta = 0.5$ soi                                                                         | M1         | 1.1 | Finding mod/arg of at least one of                                                    | Could be seen later                |
|   |     | <b>4</b> 2 <b>9</b> 2                                                                                            |            |     | their roots                                                                           |                                    |
|   |     | $u_n = A(2+i)^n + B(2-i)^n$                                                                                      | M1         | 1.1 | General solution in any form (can                                                     |                                    |
|   |     |                                                                                                                  | 1,11       | 141 | be implied by correct real form)                                                      |                                    |
|   |     |                                                                                                                  |            |     | FT                                                                                    |                                    |
|   |     | $u_n = r^n(\alpha \cos(n\theta) + \beta \sin(n\theta))$ soi                                                      | <b>A1</b>  | 1.1 | General solution in real form with                                                    | FT their $A$ and $B$ . $r$ could   |
|   |     | $u_n = T(a\cos(n\theta) + \beta\sin(n\theta))$ so                                                                | 711        | 1.1 | $r$ and $\theta$ either specified or in situ                                          | be seen as eg 2.24 and $\theta$ as |
|   |     |                                                                                                                  |            |     | 7 and 8 ettner specified of in situ                                                   |                                    |
|   |     |                                                                                                                  |            |     |                                                                                       | eg 0.46 or 26.6 here               |
|   |     |                                                                                                                  | M1         | 1.1 | Cubatitutina aith an initial                                                          |                                    |
|   |     | $eg \ n = 0 \ [ \Rightarrow \alpha = 0 ]$                                                                        | IVII       | 1.1 | Substituting <b>either</b> initial                                                    |                                    |
|   |     | _                                                                                                                |            |     | condition into their GS                                                               |                                    |
|   |     | $n = 1 => \beta = 1$ so $u_n = 5^{\frac{\pi}{2}} \sin n\theta$ oe                                                | <b>A1</b>  | 1.1 | allow eg $u_n = 5^{\frac{n}{2}} \sin\left(n \tan^{-1}\left(\frac{1}{2}\right)\right)$ |                                    |
|   |     |                                                                                                                  | [7]        |     | (2))                                                                                  |                                    |
|   |     | Alternative Method                                                                                               | [7]        |     |                                                                                       |                                    |
|   |     |                                                                                                                  | 3.//1      | 1 1 | A '11'                                                                                |                                    |
|   |     | $u_n = kp^n \Longrightarrow p^2 - 4p + 5 = 0$                                                                    | M1         | 1.1 | Auxiliary equation                                                                    | One sign error                     |
|   |     | $\Rightarrow p = 2 \pm i$                                                                                        | M1         | 1.1 | BC. Solving their auxiliary                                                           |                                    |
|   |     | _                                                                                                                | 3.54       |     | equation                                                                              |                                    |
|   |     | $r = \sqrt{5}$ , $\tan \theta = 0.5$ soi                                                                         | M1         | 1.1 | Finding mod/arg of at least one                                                       | Could be seen later                |
|   |     |                                                                                                                  |            |     | root                                                                                  |                                    |
|   |     | $u_n = A(2+i)^n + B(2-i)^n$                                                                                      | M1         | 1.1 | General solution in any form (can                                                     |                                    |
|   |     |                                                                                                                  |            |     | be implied by correct real form)                                                      |                                    |
|   |     | $0 = A + B \Rightarrow A = -B$                                                                                   | M1         | 1.1 | Using one initial condition to find                                                   |                                    |
|   |     |                                                                                                                  |            |     | an arbitrary constant                                                                 |                                    |
|   |     | $A(2+i)^n + B(2-i)^n = 1 \Rightarrow A = -\frac{1}{2}i, B = \frac{1}{2}i$                                        |            |     |                                                                                       |                                    |
|   |     |                                                                                                                  |            |     |                                                                                       |                                    |
|   |     | $u_n = -\frac{1}{2}i\sqrt{5}^n(\cos\theta + i\sin\theta)^n + \frac{1}{2}i\sqrt{5}^n(\cos\theta - i\sin\theta)^n$ |            |     |                                                                                       |                                    |
|   |     | $-\frac{1}{2}i\sqrt{5}^{n}(\cos\theta+i\sin\theta)^{n}+\frac{1}{2}i\sqrt{5}^{n}(\cos\theta-i\sin\theta)^{n}$     | <b>A1</b>  | 1.1 | Solution given in mod/arg form                                                        | FT their A and B. r could          |
|   |     | 2                                                                                                                |            |     | (Could also see $e^{i\theta}$ )                                                       | be seen as eg 2.24 and $\theta$ as |
|   |     | п                                                                                                                |            |     |                                                                                       | eg 0.46 or 26.6 here               |
|   |     | $u_n = 5^{\frac{\pi}{2}} \sin n\theta$ oe                                                                        | <b>A1</b>  | 1.1 |                                                                                       |                                    |
|   |     |                                                                                                                  | [7]        |     |                                                                                       |                                    |

| Y435/01 | Mark Scheme | November 2020 |
|---------|-------------|---------------|
|---------|-------------|---------------|

| 3 | (b) | If $a = 0.1$ then $v_n$ converges to 0 as as $n \rightarrow \infty$ . | B1        | 2.5  | No need to mention oscillatory     | Diagrams only not              |
|---|-----|-----------------------------------------------------------------------|-----------|------|------------------------------------|--------------------------------|
|   |     |                                                                       |           |      | but must give the limit            | sufficient for all three cases |
|   |     | If $a = 0.2$ then $v_n$ [does not converge]                           | <b>B1</b> | 2.2b | Not "diverges"                     |                                |
|   |     | and is bounded and oscillatory.                                       | B1        | 2.2b | Allow descriptions (eg "the sign   | B1 bounded                     |
|   |     |                                                                       |           |      | changes regularly" or "it goes     | B1 oscillatory                 |
|   |     |                                                                       |           |      | positive and negative" and "it is  | ·                              |
|   |     |                                                                       |           |      | bounded or "always between -1      |                                |
|   |     |                                                                       |           |      | and 1").                           |                                |
|   |     |                                                                       |           |      | Ignore "periodic"                  |                                |
|   |     | If $a = 1$ then $v_n$ diverges                                        | <b>B1</b> | 2.2b | Allow eg "the terms get bigger (in |                                |
|   |     |                                                                       |           |      | size)".                            |                                |
|   |     | and is oscillatory.                                                   | <b>B1</b> | 2.2b | Allow descriptions (eg "the sign   |                                |
|   |     |                                                                       |           |      | changes regularly" or "it goes     |                                |
|   |     |                                                                       |           |      | positive and negative").           |                                |
|   |     |                                                                       |           |      |                                    |                                |
|   |     |                                                                       | [5]       |      |                                    |                                |

| 4 | (a)        | (i)   | 2n+1+2m+1=2(n+m+1) so not closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1         | 2.1  | Must show some working                |                                                               |
|---|------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|---------------------------------------|---------------------------------------------------------------|
|   |            |       | $[0 \notin G \text{ so}]$ no identity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>B1</b>  | 2.2a | Could be seen with next B1            |                                                               |
|   |            |       | Since no identity the inverse property cannot be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1         | 2.2a | Cannot gain this B1 without           |                                                               |
|   |            |       | satisfied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |      | previous B1                           |                                                               |
|   |            |       | Sutisfied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [3]        |      | previous B1                           |                                                               |
| 4 | (0)        | (22)  | ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 ) ( 1 5 | B1         | 2.1  | Must sharr same worlding              | Elements mayot be compact                                     |
| 4 | (a)        | (ii)  | $(a+b\sqrt{2})(c+d\sqrt{2}) = ac + 2bd + (bc+ad)\sqrt{2}$ so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ы          | 2.1  | Must show some working                | Elements must be general                                      |
|   |            |       | closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |                                       | and distinct                                                  |
|   |            |       | $a = 1, b = 0 \Rightarrow 1 \in G$ so identity exists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1         | 2.2a | 1 must be seen                        |                                                               |
|   |            |       | eg $\frac{1}{2+\sqrt{2}} = 1 - \frac{1}{2}\sqrt{2} \notin G$ so inverse property not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>B1</b>  | 2.2a | Single numerical counter example      | For $\frac{a}{a^2-2b^2} + \frac{b\sqrt{2}}{a^2-2b^2}$ need to |
|   |            |       | $= \frac{1}{2} = 1 - \frac{1}{2} \sqrt{2} \notin G$ so inverse property not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      | is sufficient or $0^{-1} \notin G$    | For $\frac{1}{a^2 - 2b^2} + \frac{1}{a^2 - 2b^2}$ need to     |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      | , .                                   | justify answer eg $\frac{a}{a^2-2b^2}$ is                     |
|   |            |       | satisfied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |      |                                       | not always in $G$                                             |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]        |      |                                       | not aiways iii O                                              |
| 4 | (-)        | (***) | 1 D . 1 D . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1         | 2.1  | NI 1 :4:6: 4:                         |                                                               |
| 4 | (a)        | (iii) | $a, b \in \mathbb{R} \Rightarrow ab \in \mathbb{R}$ so closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ВI         | 2.1  | Need justification                    |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |                                       |                                                               |
|   |            |       | $1 \in \mathbb{R}$ and $a \times 1 = 1 \times a = a \in \mathbb{R}$ so identity exists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>B1</b>  | 2.2a | 1 must be seen                        |                                                               |
|   |            |       | $0^{-1} \notin \mathbb{R}$ so inverse property not satisfied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>B1</b>  | 2.2a |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]        |      |                                       |                                                               |
| 4 | <b>(b)</b> | (i)   | $\begin{pmatrix} -1 & 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1         | 3.1a |                                       |                                                               |
|   | , ,        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |                                       |                                                               |
|   |            |       | $\begin{pmatrix} 0 & -1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |                                       |                                                               |
|   |            |       | $ \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & -i \\ -i & -1 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>B1</b>  | 1.1  |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |                                       |                                                               |
|   |            |       | $ \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>B1</b>  | 1.1  |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      |                                       |                                                               |
|   |            |       | $\begin{pmatrix} -1 & 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |                                       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]        |      |                                       |                                                               |
| 4 | <b>(b)</b> | (ii)  | They are not isomorphic because <i>M</i> contains only one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>B</b> 1 | 2.4  | Or other valid reason (eg <i>M</i> is |                                                               |
|   |            |       | element of order 2 while <i>N</i> is known to contain at least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      | cyclic while <i>N</i> is not since it |                                                               |
|   |            |       | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |      | requires more than 1 element to       |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |      | generate it)                          |                                                               |
|   |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [1]        |      | B34 mod 40)                           |                                                               |
|   |            | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L*J        |      |                                       |                                                               |

|   | ( ) |                                                                                                                                                                                                                                                                                             | 1 3.51    |      | T: 1:                                                     |                            |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----------------------------------------------------------|----------------------------|
| 5 | (a) | $\begin{bmatrix} \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{3} \begin{pmatrix} a - 2b - 2c \\ -2a + b - 2c \\ -2a - 2b + c \end{pmatrix}$                                                     | M1        | 3.1a | Finding vector <b>A.f</b>                                 |                            |
|   |     |                                                                                                                                                                                                                                                                                             |           |      |                                                           |                            |
|   |     | $\mathbf{e.f} = 0 \Rightarrow a + b + c = 0$                                                                                                                                                                                                                                                | M1        | 3.1a | Using perpendicularity condition                          |                            |
|   |     |                                                                                                                                                                                                                                                                                             |           |      | to find a relationship between $a, b$ and $c$             |                            |
|   |     | (-b-c-2b-2c) $(-b-c)$                                                                                                                                                                                                                                                                       | M1        | 1.1  | Eliminating $a, b$ or $c$ consistently                    | soi                        |
|   |     | $\therefore \mathbf{A.f} = \frac{1}{3} \begin{pmatrix} -b - c - 2b - 2c \\ 2(b+c) + b - 2c \\ 2(b+c) - 2b + c \end{pmatrix} = \begin{pmatrix} -b - c \\ b \\ c \end{pmatrix}$                                                                                                               |           |      | in all 3 components to derive <b>A.f</b>                  |                            |
|   |     | (2(b+c)-2b+c) $(c)$                                                                                                                                                                                                                                                                         |           |      | in two unknowns or eliminating b                          |                            |
|   |     |                                                                                                                                                                                                                                                                                             |           |      | or $c$ in $x$ , $a$ or $c$ in $y$ and $a$ or $b$ in $z$ . |                            |
|   |     | (a)                                                                                                                                                                                                                                                                                         |           | 3.2a | Completing substitution and                               |                            |
|   |     | $\therefore \mathbf{A}.\mathbf{f} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{f}  \text{so } \mathbf{f} \text{ is an e-vec of } \mathbf{A}$                                                                                                                                       | <b>A1</b> |      | correct conclusion                                        |                            |
|   |     | $\binom{c}{}$                                                                                                                                                                                                                                                                               | [4]       |      |                                                           |                            |
|   |     | Alternative method:                                                                                                                                                                                                                                                                         | [T]       |      |                                                           |                            |
|   |     |                                                                                                                                                                                                                                                                                             | M1        | 3.1a | Expressing a general <b>f</b> in terms of                 | Showing that a specific    |
|   |     | $\mathbf{f} = \lambda \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$                                                                                                                                                                          |           |      | two non-parallel vectors which                            | perpendicular vector is an |
|   |     | $\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$                                                                                                                                                                                                                          |           |      | are both perpendicular to <b>e</b>                        | e-vec SC2 or M1SC1         |
|   |     |                                                                                                                                                                                                                                                                                             |           |      |                                                           |                            |
|   |     |                                                                                                                                                                                                                                                                                             |           |      |                                                           |                            |
|   |     | (1 -2 -2)((1) (0))                                                                                                                                                                                                                                                                          | M1        | 1.1  | Opening brackets                                          |                            |
|   |     | $\therefore \mathbf{A.f} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} \lambda \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} =$                                                       |           |      |                                                           |                            |
|   |     | $\begin{pmatrix} -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 0 \end{pmatrix} & \begin{pmatrix} -1 \end{pmatrix} \end{pmatrix}$                                                                                                                                                |           |      |                                                           |                            |
|   |     | (1 -2 -2)(1) $(1 -2 -2)(0)$                                                                                                                                                                                                                                                                 |           |      |                                                           |                            |
|   |     | $\begin{bmatrix} \frac{1}{3}\lambda \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \frac{1}{3}\mu \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ |           |      |                                                           |                            |
|   |     |                                                                                                                                                                                                                                                                                             | M1        | 2.10 | Multiplying vectors into matrix                           |                            |
|   |     | $=\frac{1}{3}\lambda \begin{pmatrix} 3\\ -3\\ 0 \end{pmatrix} + \frac{1}{3}\mu \begin{pmatrix} 0\\ 3\\ -3 \end{pmatrix}$                                                                                                                                                                    | IVII      | 3.1a | Multiplying vectors into matrix                           |                            |
|   |     | $\begin{bmatrix} -3 & 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{3}{3} & \mu \\ -3 \end{bmatrix}$                                                                                                                                                                                  |           |      |                                                           |                            |
|   | l   |                                                                                                                                                                                                                                                                                             |           |      |                                                           |                            |

|   |            | $\therefore \mathbf{A}.\mathbf{f} = \lambda \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \mathbf{f} \text{ so } \mathbf{f} \text{ is an e-vec of } \mathbf{A}$                                                                                                                                                                                                                                                                                                                                                                                       | A1        | 3.2a | Completing and correct conclusion                                    |  |
|---|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|----------------------------------------------------------------------|--|
|   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [4]       |      |                                                                      |  |
|   |            | Alternative Method 2:<br>To find e-vals put $ \begin{vmatrix} \frac{1}{3} - \lambda & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} - \lambda & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} - \lambda \end{vmatrix} = 0 \Rightarrow \lambda^3 - \lambda^2 - \lambda + 1 = 0 $                                                                                                                                                                                                                                                                                               | M1        | 3.1a | For attempt at ch eqn eg $det \mathbf{A} - \lambda \mathbf{I} $ seen |  |
|   |            | $(\lambda = -1 \text{ gives } \mathbf{e}) \text{ so consider } \lambda = 1:$ If $\mathbf{f} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ then we need $\begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$                                                                                                                                                                                       | M1        | 1.1  |                                                                      |  |
|   |            | or $\frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{3} - 1 & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} - 1 & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} - 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0$ $\Rightarrow a + b + c = 0$ But $f = \begin{pmatrix} a \\ b \end{pmatrix}$ and $e = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ so $a + b + c = 0 \Rightarrow \mathbf{e.f} = 0$ | M1        | 3.1a |                                                                      |  |
|   |            | $\begin{array}{c} & & \\ c' & & \\ \Rightarrow \mathbf{f} \text{ must be perpendicular to } \mathbf{e} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>A1</b> | 3.2a |                                                                      |  |
|   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | [4]  |                                                                      |  |
| 5 | <b>(b)</b> | $\lambda_{\mathbf{f}} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1        | 2.2a |                                                                      |  |

| 5 | (c) | Since the e-val of any vector <b>f</b> is 1 then <b>f</b> must be parallel to (or lie in) the mirror plane.  Since the e-val of <b>e</b> is -1 then <b>e</b> must be perpendicular to the mirror plane.                                                                            | B1<br>B1  | 2.4  | SC1 using the word line instead of plane Needs more than invariant line/line of invariant points |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|--------------------------------------------------------------------------------------------------|
| 5 | (d) | Since <b>e</b> is the normal to the mirror plane and O must be in the plane the equation is $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \Rightarrow x + y + z = 0$ | [2]<br>B1 | 3.1a |                                                                                                  |

|   |     | <b>(8)</b> | T                                                                                                 | 1         | r   | T                                             | 1                                   |
|---|-----|------------|---------------------------------------------------------------------------------------------------|-----------|-----|-----------------------------------------------|-------------------------------------|
| 6 | (a) | (i)        | $\frac{\partial f}{\partial x} = 16x^3 - 34xy^2$ $\frac{\partial f}{\partial y} = 16y^3 - 34x^2y$ |           |     |                                               |                                     |
|   |     |            | $\partial x$                                                                                      |           |     |                                               |                                     |
|   |     |            | $\partial f_{-16}^{3}$ $24v^{2}v$                                                                 | <b>B1</b> | 1.1 | for both                                      |                                     |
|   |     |            | $\frac{1}{\partial y} = 10y - 34x y$                                                              |           |     |                                               |                                     |
|   |     |            | $16x^3 - 34xy^2 = 0$ and $16y^3 - 34x^2y = 0$                                                     | M1        | 1.1 | both                                          |                                     |
|   |     |            | 1                                                                                                 | M1        | 1.1 | For <b>M0</b> here <b>SC1</b> for             |                                     |
|   |     |            | So $x = 0$ or $16x^2 - 34y^2 = 0$ (or equivalent for $\frac{\partial f}{\partial y} = 0$ )        |           |     | $16x^2 - 34y^2 = 0$ and subs $x^2$ or         |                                     |
|   |     |            |                                                                                                   |           |     | $y^2$ into the other equation                 |                                     |
|   |     |            | But both $x = 0$ and $16x^2 - 34y^2 = 0 \Rightarrow y = 0$ when                                   |           |     |                                               |                                     |
|   |     |            | substituted into the other equation so                                                            | M1        | 1.1 | For <b>M0</b> here <b>SC1</b> for $x = y = 0$ |                                     |
|   |     |            |                                                                                                   |           |     | only                                          |                                     |
|   |     |            | x = 0 and $y = 0$ [is the only solution].                                                         | <b>A1</b> | 1.1 |                                               |                                     |
|   |     |            |                                                                                                   | [5]       |     |                                               |                                     |
| 6 | (a) | (ii)       | (s=) 0                                                                                            | <b>B1</b> | 1.1 |                                               |                                     |
|   |     |            |                                                                                                   | [1]       |     |                                               |                                     |
| 6 | (a) | (iii)      | $4x^4 + 4y^4 - 17x^2y^2 = (4x^2 - y^2)(x^2 - 4y^2)$                                               | M1        | 1.1 |                                               |                                     |
|   |     |            | (2x-y)(2x+y)(x-2y)(x+2y) or                                                                       |           |     |                                               |                                     |
|   |     |            | $y = (+/-)2x$ and $y = (+/-)\frac{1}{2}x$                                                         | A1        | 1.1 |                                               |                                     |
|   |     |            |                                                                                                   | A1        | 1.1 | Sketch of the four complete (ie               |                                     |
|   |     |            | 3                                                                                                 |           |     | each line going across two                    |                                     |
|   |     |            |                                                                                                   |           |     | quadrants) lines $y = \pm 2x$ and             |                                     |
|   |     |            | 10 5 10                                                                                           |           |     | $y = \pm \frac{1}{2}x$ . No scale necessary.  |                                     |
|   |     |            |                                                                                                   |           |     |                                               |                                     |
|   |     |            |                                                                                                   |           |     |                                               |                                     |
|   |     |            |                                                                                                   |           |     |                                               |                                     |
|   |     |            | 304                                                                                               | [3]       |     |                                               |                                     |
| 6 | (a) | (iv)       | The $z = 0$ plane is divided into positive and negative                                           | B1        | 2.4 | or equivalent explanation eg                  | SC1 No appeal to diagram            |
|   |     |            | 'wedges' so it is not the case that $z > 0$ at all points                                         |           |     | moving eg along x-axis, through               | but correctly finding two z         |
|   |     |            | near P (the stationary point) so it is not a minimum and                                          |           |     | P, $z$ is +ve, 0, +ve while along eg          | coordinates, one positive           |
|   |     |            | similarly it is not the case that $z < 0$ at all points near P                                    |           |     | y = x, through P, z is -ve, 0, -ve            | and one negative and                |
|   |     |            | so it is not a maximum.                                                                           |           |     | or $z$ is positive on the negative $x$ -      | stating that there are no           |
|   |     |            | So P must be a saddle point.                                                                      |           |     | axis and negative on the positive             | other SPs                           |
|   |     |            |                                                                                                   |           |     | branch of $y = x$ etc                         | <b>No FT</b> for 0/3 in 6 (a) (iii) |

| 6 | <b>(b)</b> | (i)   | $(16a^3 - 34a \times a^2) (-18a^3)$                                                                                                                                                                                                                                                                | M1        | 1.1          | or any non-zero multiple                                                                                                                                                                                                                                        | FT from (a)(i)                  |
|---|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|   |            |       | $\mathbf{n} = \begin{pmatrix} 16a^3 - 34a \times a^2 \\ 16a^3 - 34a^2 \times a \\ -1 \end{pmatrix} = \begin{pmatrix} -18a^3 \\ -18a^3 \\ -1 \end{pmatrix}$ $p = \begin{pmatrix} a \\ a \\ 4a^4 + 4a^4 - 17a^2 \times a^2 \end{pmatrix} \cdot \begin{pmatrix} -18a^3 \\ -18a^3 \\ -1 \end{pmatrix}$ | M1        | 1.1          | their <b>n</b>                                                                                                                                                                                                                                                  |                                 |
|   |            |       | $\mathbf{r.} \begin{pmatrix} 18a^3 \\ 18a^3 \\ 1 \end{pmatrix} = 27a^4  \text{oe}$                                                                                                                                                                                                                 | A1        | 1.1          | cao isw                                                                                                                                                                                                                                                         |                                 |
| 6 | <b>(b)</b> | (ii)  | $27a^4$                                                                                                                                                                                                                                                                                            | M1        | 3.1a         | FT their (i)                                                                                                                                                                                                                                                    |                                 |
|   |            |       | $d = \frac{27a^4}{ \mathbf{n} }  \text{soi}$ $ \mathbf{n}  = \sqrt{2(18a^3)^2 + 1} \approx 18\sqrt{2}a^3  \text{for large } a$ $\therefore \frac{d}{a} \to \frac{1}{a} \times \frac{27a^4}{18\sqrt{2}a^3} = \frac{3\sqrt{2}}{4}$                                                                   | M1 A1 [3] | 3.1a<br>3.2a | FT their (i) Or equivalent argument using limits AG                                                                                                                                                                                                             | No limits discussion <b>SC1</b> |
| 6 | (b)        | (iii) | Below.                                                                                                                                                                                                                                                                                             | E1        | 2.4          | Or in the equation                                                                                                                                                                                                                                              |                                 |
|   |            |       | If $x = y = 0$ in equation for $\Pi$ then $z = 27a^4 > 0$ so the z-intercept is positive so the origin is below the plane.                                                                                                                                                                         | [1]       |              | $\mathbf{r.} \begin{pmatrix} 18a^3 \\ 18a^3 \\ 1 \end{pmatrix} = 27a^4$ the z component of $\mathbf{n}$ is positive and so $\mathbf{n}$ is pointing upward but $p > 0$ so O is on the other side of the plane ie below (or equivalent argument with –ve signs). | Needs more than z > 0           |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

### **OCR Customer Contact Centre**

## **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

