

# GCE

# **Further Mathematics A**

### Y531/01: Pure Core

Advanced Subsidiary GCE

## Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

#### Annotations and abbreviations

| Annotation in RM assessor | Meaning                                                                                             |
|---------------------------|-----------------------------------------------------------------------------------------------------|
| ✓ and ¥                   |                                                                                                     |
| BOD                       | Benefit of doubt                                                                                    |
| FT                        | Follow through                                                                                      |
| ISW                       | Ignore subsequent working                                                                           |
| M0, M1                    | Method mark awarded 0, 1                                                                            |
| A0, A1                    | Accuracy mark awarded 0, 1                                                                          |
| B0,B1                     | Independent mark awarded 0, 1                                                                       |
| SC                        | Special case                                                                                        |
| ^                         | Omission sign                                                                                       |
| MR                        | Misread                                                                                             |
| BP                        | Blank Page                                                                                          |
| Seen                      |                                                                                                     |
| Highlighting              |                                                                                                     |
|                           |                                                                                                     |
| Other abbreviations in    | Meaning                                                                                             |
| mark scheme               |                                                                                                     |
| dep*                      | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao                       | Correct answer only                                                                                 |
| oe                        | Or equivalent                                                                                       |
| rot                       | Rounded or truncated                                                                                |
| soi                       | Seen or implied                                                                                     |
| WWW                       | Without wrong working                                                                               |
| AG                        | Answer given                                                                                        |
| a wrt                     | Anything which rounds to                                                                            |
| BC                        | By Calculator                                                                                       |
| DR                        | This question included the instruction: In this question you must show detailed reasoning.          |

| Q | uestio     | n | Answer                                                                                                                                                           | Marks                | AO                        | Guid                                                                                                                                                                                                                                                                                                           | lance                                                                                                                                                       |
|---|------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <b>(a)</b> |   | $8 - 2\lambda = -6 - 3\mu$ and $-11 + 5\lambda = 11 + \mu$                                                                                                       | <b>B1</b>            | 1.1a                      | Forming 2 correct equations in                                                                                                                                                                                                                                                                                 | Any two correct equations                                                                                                                                   |
| 1 | (a)        |   | $8 - 2\lambda = -6 - 3\mu$<br>-33 + 15\lambda = 33 + 3\mu<br>=> -25 + 13\lambda = 27<br>$\lambda = 4, \ \mu = -2$<br>- 2 + 3\times 4 = 10 and 82 = 10 so they do | В1<br>M1<br>A1<br>A1 | 1.1a<br>1.1<br>1.1<br>2.4 | $\lambda$ and $\mu$ .<br>Could be $-2 + 3\lambda = 8 - \mu$<br>Attempt to solve (eg scaling<br>one equation and adding or<br>rewriting to a standard form for<br>solution BC). Must reach an<br>equation (possibly incorrect)<br>with only one unknown.<br>Both<br>Checking for consistency in 3 <sup>rd</sup> | $-2\lambda + 3\mu = -14$<br>$5\lambda - \mu = 22$<br>$3\lambda + \mu = 10$<br>ie - 2 + 3×4 = 82 alone is                                                    |
|   |            |   | intersect                                                                                                                                                        | [4]                  |                           | equation and conclusion.<br>Equation must be correct and<br>both sides must be evaluated<br>Allow eg $8-2\times4=-6-3\times-2$ $0=0$ Might see $\lambda = 4$ substituted into<br>last equation and then $\mu$ being<br>found with this.                                                                        | not sufficient for A1, need to<br>see both sides becoming 10<br>x: $8 - 2 \times 4 = 0 \& -6 - 3 \times -2 = 0$<br>y: $-11 + 5 \times 4 = 9 \& 11 + -2 = 9$ |
|   | <b>(b)</b> |   | (0, 9, 10)                                                                                                                                                       | B1<br>[1]            | 1.1                       | Allow as vector                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |

PMT

| Q | uestion | Answer                                                                                           | Marks     | AO   | Guid                                                         | ance                                                     |
|---|---------|--------------------------------------------------------------------------------------------------|-----------|------|--------------------------------------------------------------|----------------------------------------------------------|
| 2 |         | u = x + 1                                                                                        | <b>B1</b> | 3.1a |                                                              |                                                          |
|   |         | $(u-1)^3 = u^3 - 3u^2 + 3u - 1$ used in                                                          | M1        | 1.1  | Attempt to expand using                                      | Follow through on their                                  |
|   |         | solution                                                                                         |           |      | binomial. 4 terms.                                           | u = x + 1                                                |
|   |         | $2x^3 + 3x^2 - 2x + 5 = 0 \Longrightarrow 2(u^3 - 3u^2 + 3u)$                                    | M1        | 1.1  | Substituting into equation.                                  | Follow through on their                                  |
|   |         | $-1) + 3(u^2 - 2u + 1) - 2(u - 1) + 5 = 0$                                                       |           |      | Allow if no "= 0" here.                                      | u = x + 1                                                |
|   |         |                                                                                                  |           |      | Must have an attempt at                                      |                                                          |
|   |         | $2u^3 - 3u^2 - 2u + 8 = 0$                                                                       | A1        | 2.5  | expanding $(u-1)^3$ and $(u-1)^2$                            | For compation found                                      |
|   |         | $2u^3 - 3u^2 - 2u + 8 = 0$                                                                       | AI        | 2.5  | Must be an equation                                          | For correct equation found<br>using sums and products of |
|   |         |                                                                                                  |           |      |                                                              | roots allow SC2 (Method                                  |
|   |         |                                                                                                  |           |      |                                                              | required was dictated in                                 |
|   |         |                                                                                                  |           |      |                                                              | question)                                                |
|   |         |                                                                                                  |           |      |                                                              | 1 /                                                      |
|   |         |                                                                                                  |           |      |                                                              | Only allocate marks using main                           |
|   |         |                                                                                                  |           |      |                                                              | scheme, or SC method                                     |
|   |         |                                                                                                  | [4]       |      |                                                              |                                                          |
|   | uestion | Answer                                                                                           | Marks     | AO   | Guid                                                         |                                                          |
| 3 |         | 3 + 5i is a root                                                                                 | <b>B1</b> | 1.2  | Need to see statement that 3+5i                              | May happen at end of question                            |
|   |         | Attempt to expand                                                                                | <b>M1</b> | 1 1  | is a root.                                                   | May caa                                                  |
|   |         | Attempt to expand<br>(x - (3 + 5i))(x - (3 - 5i))                                                | IVII      | 1.1  | Attempt to use the conjugate pair to derive a real quadratic | May see $(3+5i)(3-5i) = 9+25 = 34$                       |
|   |         | (x - (3 + 51))(x - (5 - 51))                                                                     |           |      | to derive a rear quadratic                                   | (3+5i)(3-5i) = 9+23 = 34<br>and $(3+5i) + (3-5i) = 6$    |
|   |         |                                                                                                  |           |      |                                                              | instead of expansion                                     |
|   |         | $= x^2 - 6x + 34$ so this must be a factor                                                       | A1        | 2.2a |                                                              | more and or employed                                     |
|   |         | $x^4 - 7x^3 - 2x^2 + 218x - 1428 =$                                                              | M1        | 1.1  | Attempt to factorise or divide                               | NB: This question required                               |
|   |         | $(x^2 - 6x + 34)(x^2 + \dots x - 42)$                                                            |           |      | resulting in $x^2$ and one other term                        | detailed reasoning                                       |
|   |         | or $(x^2 - 6x + 34)(x^2 - x +)$                                                                  |           |      |                                                              |                                                          |
|   |         | $(x^2 - 6x + 34)(x^2 - x - 42)$                                                                  | A1        | 1.1  |                                                              |                                                          |
|   |         | $(x^2 - 0x + 54)(x^2 - x - 42)$<br>$(x^2 - x - 42) = (x - 7)(x + 6) \Longrightarrow roots -6, 7$ | A1<br>A1  | 1.1  | 3 + 5i may be mentioned as a                                 |                                                          |
|   |         | $(x^2 - x - 42) = (x - 7)(x + 6) = 710018 = 6, 7$<br>(and 3 + 5i)                                | <b>A1</b> | 1.1  | root earlier in the solution                                 |                                                          |
|   |         |                                                                                                  | [6]       |      |                                                              |                                                          |

| Q | uestio | n    | Answer                                                                   | Marks     | AO  | Guida                                                                               | ince                                                                                                                |
|---|--------|------|--------------------------------------------------------------------------|-----------|-----|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 4 | (a)    | (i)  | Line drawn, perpendicular to line segment joining $(0, -1)$ and $(2, 0)$ | M1        | 1.1 | Line needs to have negative<br>gradient with gradient >1 and to                     | If "shading out" is used then<br>there needs to be an indication                                                    |
|   |        |      | Journe (0, 1) and (2,0)                                                  |           |     | intersect the y axis at a positive value                                            | that the required region is<br>below the line, such as "R"<br>placed below line or "This<br>region" written in etc. |
|   |        |      | Region below line indicated as being the required region.                | A1<br>[2] | 1.1 | Exact perpendicularity not<br>needed, but should be<br>approximately perpendicular. |                                                                                                                     |
|   | (a)    | (ii) | $m = -1/(\frac{1}{2}) = -2$                                              | M1        | 1.1 |                                                                                     |                                                                                                                     |
|   |        |      | 4x + 2y - 3 = 0                                                          | A1        | 1.1 | Explicitly stated                                                                   | Note must be in required form $ax+by+c=0$                                                                           |
|   |        |      |                                                                          | [2]       |     |                                                                                     | -                                                                                                                   |
|   | (b)    |      | Circle centre $(-1, 0)$ radius 3 or circle centre $(0, 2)$ radius 2.     | M1        | 1.1 | Radius can be implied by axis labels or tick-marks.                                 |                                                                                                                     |
|   |        |      | Both circles correct                                                     | A1        | 1.1 |                                                                                     | If M0A0 then SC1 for two circles with correct radii but centres $(1, 0)$ and $(0, -2)$                              |
|   |        |      | Correct region shaded or otherwise indicated                             | A1        | 1.1 | Region inside circle with radius 3 but outside circle with radius 2.                |                                                                                                                     |
|   |        |      |                                                                          | [3]       |     |                                                                                     |                                                                                                                     |

| Q | uestion      | Answer                                                                                                                                                                                                                                                                                                                    | Marks           | AO         | Guid                                                                                                                                | lance                                                                                                                                                                                    |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | (a)          | $\mathbf{AB} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13}\\ \frac{12}{13} & \frac{5}{13} \end{pmatrix} = \begin{pmatrix} -\frac{5}{13} & \frac{12}{13}\\ \frac{12}{13} & \frac{5}{13} \end{pmatrix}$                                                                      | M1              | 2.1        | BC. <b>AB</b> or <b>BA</b> correct.                                                                                                 | Could see<br>$\frac{1}{13} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & -12 \\ 12 & 5 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$ |
|   |              | $\mathbf{BA} = \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\frac{5}{13} & -\frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{pmatrix} \neq \mathbf{AB}$<br>so matrix multiplication is not commutative | A1              | 2.2a       | BC. Other multiplication correct and conclusion                                                                                     |                                                                                                                                                                                          |
|   |              | so matrix indiuplication is not commutative                                                                                                                                                                                                                                                                               | [2]             |            |                                                                                                                                     |                                                                                                                                                                                          |
|   | (b)          | Rotation about <i>O</i><br>67.4° anticlockwise                                                                                                                                                                                                                                                                            | M1<br>A1<br>[2] | 1.2<br>1.1 | or 1.18 rads                                                                                                                        | 1                                                                                                                                                                                        |
|   | (c)          | $(T_B)^{-1}$ is a rotation about <i>O</i> by $-67.4^{\circ}$                                                                                                                                                                                                                                                              | M1              | 3.1a       | Correct inverse of their rotation                                                                                                   | Could also be rotation of 292.6°                                                                                                                                                         |
|   |              | anticlockwise (or 67.4° clockwise)<br>So $\mathbf{B}^{-1} = \begin{pmatrix} \cos(-67.4^\circ) & -\sin(-67.4^\circ) \\ \sin(-67.4^\circ) & \cos(-67.4^\circ) \end{pmatrix}$<br>$\begin{pmatrix} \underline{5} & \underline{12} \end{pmatrix}$                                                                              | A1              | 1.1        | T <sub>B</sub> .<br>or $\mathbf{B}^{-1} = \begin{pmatrix} 0.385 & 0.923 \\ -0.923 & 0.385 \end{pmatrix}$ (allow<br>0.384 for 0.385) | anticlockwise<br>NB: Question states "by<br>considering the inverse<br>transformation".                                                                                                  |
|   |              | $= \begin{pmatrix} \frac{5}{13} & \frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{pmatrix}$                                                                                                                                                                                                                           | [2]             |            |                                                                                                                                     | SC1 For correct inverse by other method.                                                                                                                                                 |
|   | ( <b>d</b> ) | det $\mathbf{B} = 1$ and det $\mathbf{C} = -3$                                                                                                                                                                                                                                                                            | [2]<br>M1       | 3.1a       | Could find <b>BC</b> and then find                                                                                                  |                                                                                                                                                                                          |
|   | (u)          | $det \mathbf{D} = 1$ and $det \mathbf{C} = -3$                                                                                                                                                                                                                                                                            | IVII            | J.14       | $det(\mathbf{BC}) = -3$                                                                                                             |                                                                                                                                                                                          |
|   |              | So area of $N =  1 \times -3  \times 5 = 15$                                                                                                                                                                                                                                                                              | A1              | 3.2a       | Area must be 15, do not allow -15 or $\pm 15$                                                                                       |                                                                                                                                                                                          |
|   |              |                                                                                                                                                                                                                                                                                                                           | [2]             |            |                                                                                                                                     |                                                                                                                                                                                          |

| Q | uestic | n | Answer                                                                                             | Marks     | AO  | Guida                                                                    | ince                                                  |
|---|--------|---|----------------------------------------------------------------------------------------------------|-----------|-----|--------------------------------------------------------------------------|-------------------------------------------------------|
| 6 | (a)    |   | $z = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \times 2 \times 25}}{2 \times 2}$                          | M1        | 2.1 | Correct substitution into formula.                                       | Or completing the square –                            |
|   |        |   | $z = \frac{1}{2 \times 2}$                                                                         |           |     | If formula quoted allow one slip.                                        | one slip allowed.                                     |
|   |        |   | $z = \frac{5}{2} \pm \frac{5}{2}i$                                                                 | A1        | 1.1 | Allow $z = \frac{5 \pm 5i}{2}$ or equivalent                             | NB: This question required detailed reasoning         |
|   |        |   |                                                                                                    | [2]       |     | fractions                                                                |                                                       |
|   | (b)    |   | $3\omega - 2 = 5i + 2i\omega \Longrightarrow 3\omega - 2i\omega = 2 + 5i$                          | [2]<br>M1 | 1.1 | Expanding and rearranging                                                | Must rearrange to isolate $\omega$                    |
|   | ()     |   | 500 2 - 51 + 210 -> 500 210 - 2 + 51                                                               |           |     | 2. Apartoning and real ranging                                           | terms on one side and other                           |
|   |        |   | $(3, 2i) = 2 + 5i \implies a = 2 + 5i$                                                             | M1        | 1.1 | Factorising and dividing by two                                          | terms on other side <b>NB: This question required</b> |
|   |        |   | $(3-2i)\omega = 2+5i \Longrightarrow \omega = \frac{2+5i}{3-2i}$                                   |           |     | term complex number                                                      | detailed reasoning                                    |
|   |        |   | $\omega = \frac{2+5i}{3-2i} \times \frac{3+2i}{3+2i} = \frac{6+4i+15i-10}{9+4}$                    | M1        | 2.1 | Multiplying top and bottom by conjugate of bottom                        |                                                       |
|   |        |   | $\omega = -\frac{4}{13} + \frac{19}{13}i$                                                          | A1        | 1.1 | <b>J</b> . <i>G</i>                                                      |                                                       |
|   |        |   | Alternative method                                                                                 |           |     |                                                                          |                                                       |
|   |        |   | $\omega = a + b\mathbf{i} \Longrightarrow 3a + 3b\mathbf{i} - 2 = 5\mathbf{i} + 2a\mathbf{i} - 2b$ | M1        |     | Assigning real and imaginary parts, to $\omega$ expanding and            |                                                       |
|   |        |   |                                                                                                    |           |     | rearranging                                                              |                                                       |
|   |        |   | 3a-2=-2b and $3b=5+2a$                                                                             | M1        |     | Comparing real and imaginary                                             |                                                       |
|   |        |   | $9a - 6 + 10 + 4a = 0 \implies a = -\frac{4}{13}$                                                  | M1        |     | parts<br>Using valid algebra to eliminate<br>one unknown and finding the |                                                       |
|   |        |   | $\Rightarrow b = \frac{19}{13} \Rightarrow \omega = -\frac{4}{13} + \frac{19}{13}i$                | A1        |     | other                                                                    |                                                       |
|   |        |   |                                                                                                    | [4]       |     |                                                                          |                                                       |

| Q | iestion | Answer                                                                                                                         | Marks     | AO   | Guid                                                                                                                  | lance                                                   |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 7 |         | Basis Case: when $n = 1$ :<br>$2^{3n} - 3^n = 2^3 - 3 = 8 - 3 = 5$<br>which is divisible by 5.                                 | B1        | 2.1  | At least one intermediate step<br>must be shown                                                                       |                                                         |
|   |         | Assume true for $n = k$ ie $2^{3k} - 3^k = 5p$ for<br>some integer $p$                                                         | M1        | 2.1  | Must have statement in terms of some other variable than <i>n</i>                                                     |                                                         |
|   |         | $2^{3(k+1)} - 3^{k+1} = 2^3 \times 2^{3k} - 3 \times 3^k$<br>= 8×(5p + 3 <sup>k</sup> ) - 3×3 <sup>k</sup>                     | M1        | 1.1  | Uses laws of indices and then<br>inductive hypothesis properly<br>to eliminate either $2^{3k}$ or $3^k$ (not<br>both) | or $8 \times 2^{3k} - 3 \times (2^{3k} - 5p)$           |
|   |         | $= 5 \times 8p + 5 \times 3^{k}$<br>=5(8p + 3 <sup>k</sup> ) = 5q<br>for some integer q and so this is also a<br>multiple of 5 | A1        | 2.2a | AG. Further simplification to establish truth for $k + 1$                                                             | $5(3p+2^{3k})$                                          |
|   |         | So true for $n = k \Rightarrow$ true for $n = k + 1$ . But<br>true for $n = 1$ .<br>So true for all integers $n \ge 1$         | A1<br>[5] | 2.4  | Clear conclusion for induction<br>process, following a <b>correct</b><br>proof by induction.                          | A formal proof by induction is required for full marks. |

| Q | uestio | n | Answer Mar                                                                                                                                          |           | AO         | Guidance                                                                          |                                                                                  |  |
|---|--------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| 8 | (a)    |   | (t-1)(6-t(2-2t)) -(t-1)((1-t)-t(2-2t)) +(t-1)((1-t)(2-2t)-6(2-2t))                                                                                  | M1        | 1.1        | Correct process for expanding determinant.                                        | Fully expanded form:<br>$2t^3 + 7t^2 - 14t + 5$                                  |  |
|   |        |   | (t-1)[(6-t(2-2t)) - ((1-t) - t(2-2t)) + ((1-t)(2-2t) - 6(2-2t))]                                                                                    | <b>M1</b> | 1.1        | Bringing $(t-1)$ or $(t+5)$ or $(2t-1)$ oe out as factor of the entire expression | Factors may appear BC from no working                                            |  |
|   |        |   | $(t-1)(6-2t+2t^2-1+t+2t-2t^2+2-4t + 2t^2-12+12t) = (t-1)(2t^2+9t-5) = (t-1)(2t-1)(t+5)$                                                             | A1<br>[3] | 1.1        |                                                                                   |                                                                                  |  |
|   | (b)    |   | -5, <sup>1</sup> ⁄2, 1                                                                                                                              | B1<br>[1] | 1.1        | FT their complete factorisation<br>of determinant into 3 linear<br>factors.       |                                                                                  |  |
|   | (c)    |   | $t = b^2 + 2$<br>and so $t \ge 2$ so cannot be $-5$ , $\frac{1}{2}$ or 1                                                                            | M1<br>A1  | 2.1<br>2.4 | So that the system is $\mathbf{Ar} = \mathbf{c}$<br>Complete reasoning must be    | Could test $t = 1, \frac{1}{2}, -5$ in                                           |  |
|   |        |   | therefore $A^{-1}$ will exist (for all values of <i>b</i> )<br>and so there will be a unique solution to the<br>system for all values of <i>b</i> . | [2]       | 2.7        | seen for A1.                                                                      | b <sup>2</sup> = $t - 2$ , and show that these<br>do not give real values of $b$ |  |

| Q | uestio | n | Answer                                                                                                                                                           | Marks | AO  | Guid                                                                                                             | ance                                                                                                                                          |
|---|--------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 9 | (a)    |   | $\overline{PQ} = \begin{pmatrix} -1\\3\\-16 \end{pmatrix} - \begin{pmatrix} 3\\5\\-21 \end{pmatrix} = \begin{pmatrix} -4\\-2\\5 \end{pmatrix}$                   | M1    | 2.1 | Attempt to find the direction<br>vector of the tunnel.<br>Any non-zero multiple.                                 |                                                                                                                                               |
|   |        |   | $\begin{pmatrix} -4 \\ -2 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ s \\ t \end{pmatrix} = 0$                                                                | M1    | 1.1 | Use of $\overrightarrow{PQ}$ . <b>b</b> = 0 in the solution.                                                     |                                                                                                                                               |
|   |        |   | -4 - 2s + 5t = 0<br>=> $2s = 5t - 4$<br>=> $s = 2.5t - 2$                                                                                                        | A1    | 2.1 | AG. Some intermediate work must be seen.                                                                         |                                                                                                                                               |
|   |        |   |                                                                                                                                                                  | [3]   |     |                                                                                                                  |                                                                                                                                               |
|   | (b)    |   | $M = \frac{1}{2} \left( \begin{pmatrix} -1\\3\\-16 \end{pmatrix} + \begin{pmatrix} 3\\5\\-21 \end{pmatrix} \right) = \begin{pmatrix} 1\\4\\-18.5 \end{pmatrix}$  | B1    | 1.1 | Position vector (or co-<br>ordinates) of mid-point found                                                         |                                                                                                                                               |
|   |        |   | $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ -18.5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ s \\ t \end{pmatrix} \text{ when } z = 0$ $= > -18.5 + \lambda t = 0$ | M1    | 3.4 | Using $z = 0$ and the equation of<br>the line to find a 'horizontal'<br>relationship between $\lambda$ and $t$ . | Condone errors in, or omission of, <i>x</i> and <i>y</i> components.                                                                          |
|   |        |   | $\Rightarrow \lambda = \frac{18.5}{t}  (\text{so } c = 18.5)$                                                                                                    | A1    | 1.1 |                                                                                                                  | NB: Question can be answered<br>just by considering the $z$<br>coordinate. If done correctly<br>and M1 A1 gained also allow<br>B1 as implied. |
|   |        |   |                                                                                                                                                                  | [3]   |     |                                                                                                                  | L                                                                                                                                             |

Y531/01

| Question | Answer                                                                                                                                                             | Marks      | AO   | Guid                                                                                                                                                                                                      | lance                                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| (c)      | So we need to minimise $\begin{vmatrix} 18.5 \\ t \\ 2.5t-2 \\ t \end{vmatrix}$                                                                                    | M1         | 3.3  | Stating or implying that the<br>length of the shaft is given by<br>$ \lambda \mathbf{b} $ and using their $\lambda / t$<br>relationship to reduce length of<br>shaft to a form with only one<br>variable. | Or eg $\left  \frac{18.5}{0.4s + 0.8} \begin{pmatrix} 1 \\ s \\ 0.4s + 0.8 \end{pmatrix} \right $                                             |
|          | $(y =) \frac{1369}{4t^2} (1 + (2.5t - 2)^2 + t^2)$<br>= $\frac{1369}{4} (7.25 - 10t^{-1} + 5t^{-2})$                                                               | M1*        | 1.1  | Finding expression for<br>(squared) length of their vector                                                                                                                                                | May see $\frac{37}{2} (7.25 - 10t^{-1} + 5t^{-2})^{\frac{1}{2}}$<br>Or $\frac{39701}{16} - \frac{6845}{2}t^{-1} + \frac{6845}{4}t^{-2}$<br>oe |
|          | So to minimise set<br>$\frac{dy}{dt} = \frac{1369}{4} (10t^{-2} - 10t^{-3}) = 0$                                                                                   | dep<br>M1* | 3.1a | Correct method for<br>minimisation of (squared)<br>length of their vector (eg<br>differentiating and setting to 0)                                                                                        | Or attempt to complete the square in $t^{-1}$ .<br>$y = \frac{1369}{4} \left( 5(t^{-1} - 1)^2 + 2.25 \right)$                                 |
|          | $10t^{-2} - 10t^{-3} = 0 \Longrightarrow t = 1$                                                                                                                    | A1         | 2.2a |                                                                                                                                                                                                           | So min when $t^{-1} - 1 = 0$ , $t = 1$                                                                                                        |
|          | So length of shaft = $\begin{vmatrix} 18.5 \begin{pmatrix} 1\\ 0.5\\ 1 \end{vmatrix}$ or<br>$\sqrt{\frac{1369}{4} (7.25 - 10 \times 1^{-1} + 5 \times 1^{-2})}$ oe | M1         | 3.4  | Substituting their <i>t</i> into their form for length of shaft                                                                                                                                           |                                                                                                                                               |
|          | $= 18.5 \times 1.5 = 27.75$                                                                                                                                        | A1         | 1.1  |                                                                                                                                                                                                           |                                                                                                                                               |

| Q | uestion | Answer                                                                                                                                                                                                                        | Marks            | AO   | Guid                                                                                                     | ance                                                                                                                                                                                                                                                                                                                        |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |         | Alternate method:<br>$\mathbf{a} = \frac{1}{2} \begin{pmatrix} -1 \\ 3 \\ -16 \end{pmatrix} + \begin{pmatrix} 3 \\ 5 \\ -21 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -18.5 \end{pmatrix}$                                    | B1               |      |                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
|   |         | $\mathbf{n} = \begin{pmatrix} -4\\ -2\\ 5 \end{pmatrix} \times \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} -2\\ 4\\ 0 \end{pmatrix} = 2 \begin{pmatrix} -1\\ 2\\ 0 \end{pmatrix} \end{pmatrix}$ | M1               |      | Attempt to find normal to vertical plane containing tunnel                                               |                                                                                                                                                                                                                                                                                                                             |
|   |         | $(k)\mathbf{b} = \begin{pmatrix} -2\\4\\0 \end{pmatrix} \times \begin{pmatrix} -4\\-2\\5 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 20\\10\\20 \end{pmatrix} = 20 \begin{pmatrix} 1\\1\\2\\1 \end{pmatrix}$              | M1               |      | Attempt to find (multiple of) <b>b</b><br>by crossing their <b>n</b> with<br>direction vector of tunnel. |                                                                                                                                                                                                                                                                                                                             |
|   |         | Need $-18.5 + \lambda = 0 => \lambda = 18.5$                                                                                                                                                                                  | <b>M1</b>        |      | Using $z = 0$ to find $\lambda$                                                                          | May see multiple of <b>b</b> used                                                                                                                                                                                                                                                                                           |
|   |         | So length of shaft = $\begin{vmatrix} 18.5 \begin{pmatrix} 1\\ \frac{1}{2}\\ 1 \end{vmatrix}$                                                                                                                                 | M1               |      |                                                                                                          | eg -18.5 + 2 $\lambda$ = 0<br>May see eg<br>$\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ -18.5 \end{pmatrix} + 9.25 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 19.5 \\ 13.25 \\ 0 \end{pmatrix}$<br>and then $\begin{pmatrix} 19.5 \\ 13.25 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 4 \\ -18.5 \end{pmatrix}$ |
|   |         | $= 18.5 \times 3/2 = 27.75$                                                                                                                                                                                                   | <u>A1</u>        |      |                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
|   | (d)     | So <b>b</b> is not parallel to the <i>z</i> -axis so the ventilation shaft does not go straight down.                                                                                                                         | [6]<br>B1<br>[1] | 3.2a | Shaft not vertical                                                                                       |                                                                                                                                                                                                                                                                                                                             |

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

**OCR Customer Contact Centre** 

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

