

GCE

Further Mathematics A

Y533/01: Mechanics

Advanced Subsidiary GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
√and x	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0,B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
Other abbreviations in	Meaning
mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
a wrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

Q	uestio	n	Answer	Marks	AO	Gui	dance
1	(a)		$\omega = 2\pi / 0.84 \text{ soi}$	M1	1.1	Correct formula for angular	
			awrt 7.48 rad s $^{-1}$	A1 [2]	1.1	velocity used $\left(\frac{50}{21}\pi\right)$	
1	(b)		$v = 2.8 \times \text{``}7.48\text{''} \text{ or } 2\pi \times 2.8 / 0.84$	M1	1.1	Correct formula for speed used	FT their value for ω if used
			awrt 20.9 m s^{-1}	A1	1.1	$\left(\frac{20}{3}\pi\right)$	
				[2]		(3)	
1	(c)		$a = \text{``20.9} \cdot \cdot \cdot \text{``2} / 2.8 \text{ or } 2.8 \times \text{``7.48} \cdot \cdot \cdot \text{``2} \text{ or}$ \text{``20.9}\tau \text{```} \times \text{``7.48}\tau \text{```}	M1	1.1	Any correct formula for acceleration used	FT their value for v if used
			awrt 157 (or 156) ms ⁻²	A1	1.1	156 if rounded values used. $\left(\frac{1000}{63}\pi^2\right)$	
				[2]			
1	(d)		towards O	B1	1.2	Any indication that the acceleration is towards the centre of the circle	
				[1]			

Y533/01 Mark Scheme October 2021

0	uestio	n Answer	Marks	AO	Gui	dance
2	(a)	D = 15000 / 20 = 750	B1	3.4	" $P = Fv$ " used in the solution	
	()	$D - R = 800 \times 0.4$	M1	3.3	Use of NII with a driving force	
					(might be incorrectly derived from	
					power), R and correct ma term.	
		R = 750 - 320 = 430	A1	1.1	AG	
			[3]			
2	(b)	Need 15000 / v_{max} = "430"	M1	3.4	Driving force = resistive force and	
					" $P = Fv$ "	
		$v_{\text{max}} = 34.9 \text{ so max speed is } 34.9 \text{ ms}^{-1} (3 \text{ sf})$	A1	1.1		
			[2]			
2	(c)	$D - R - 800g \times \sin\alpha = 800 \times 0.15$	M1	3.1b	NII with a driving force, R, a	
		(=15000 / v - 60v - 1568 = 120)			component of weight (condone	
					incorrect component) and correct	
					ma term.	
		$60v^2 + 1688v - 15000 = 0$	M1	3.1a	Reduction to 3 term quadratic	
					equation (must be equation)	
		7.10 or –35.2	A1	1.1	BC (condone 7.09 from incorrect	Both roots must be seen for this
					rounding for this mark)	mark
		Since $v > 0$, speed is 7.10 ms ⁻¹ (3 sf)	A1FT	2.3	FT their quadratic, if one positive	SC1 if A0A0 for 7.10 ms ⁻¹ with no
					and one negative root (ie if $ac < 0$)	justification
					for selecting their positive root	
					with valid reason given.	
			[4]			

Question		1	Answer	Marks	AO	Guidance
3	(a)		Cons of Momentum:	M1	1.1	Or $0.5 \times 3.15 = 0.5 \times \frac{1}{2}v_B + 0.8 \times v_B$
			$0.5 \times 3.15 = 0.5v_A + 0.8 \times 2v_A$			
			$v_A = 0.75$	A1	1.1	$v_B = 1.5$
			So $v_B = 2v_A = 1.5$	A1	1.1	$v_A = \frac{1}{2}v_B = 0.75$
				[3]		

Y533/01 Mark Scheme October 2021

	(1)	"1.5" – "0.75"	3.71	1 1	C 1 C .: 1	
3	(b)	. (1)	M1	1.1	Speed of separation over speed	
		$e = (\pm) {3.15 - 0}$			of approach.	
					Using their values from 3(a)	
					provided c.o.m. used (and in	
					subsequent questions)	
		$\frac{5}{21}$ or awrt 0.238	A1	1.1	1 1 /	
		21 21 21 21 21 21 21 21 21 21 21 21 21 2				
			[2]			
3	(c)	Because e is the ratio of two speeds (in ms ⁻¹)	B1	2.4	oe	
		(the units cancel and so) it is a dimensionless				
		quantity.				
			[1]			
3	(d)	Initial KE = $\frac{1}{2} \times 0.5 \times 3.15^2$	M1	1.1	$\frac{3969}{1600}$ = 2.48 Correct KE calc	Or change/gain of KE of B =
	, ,				1600	$0.8 \times "1.5"^{2}$
		Final KE = $\frac{1}{2} \times 0.5 \times \text{``}0.75\text{'''}2 + \frac{1}{2} \times 0.8 \times \text{''}0.75\text{'''}2$	M 1	1.1	$\frac{333}{330}$ = 1.04 KE calculation with	Change/loss of KE of A =
		"1.5"2			320	$\pm \frac{1}{2} \times 0.5 \times (0.75)^2 \mp \frac{1}{2} \times$
					correct m and their u and $2u$	0.5×3.15^2
		KE Loss = 2.48 – 1.04 = 1.44 J	A1	1.1	ET their speeds if positive	2.34 - 0.9 = 1.44J
		KE LOSS – 2.40 – 1.04 – 1.44 J	AI	1.1	FT their speeds if positive.	
					$\frac{36}{25} = 1.44$	NB Must be positive value for the
			F 2 3			amount lost
			[3]			
3	(e)	Not perfectly elastic since KE is lost oe	B1	2.4	eg $e \neq 1$ oe (but just $e = 0.238$	
					is insufficient)	
			[1]			
3	(f)	Change in B's momentum = 0.8×1.5	M1	1.1	Using impulse = change in	Or by finding the change in A's
	` ′				momentum (condone sign error)	momentum:
					, ,	$0.5 \times 0.75 - 0.5 \times 3.15$
		$(\pm)1.2 \text{ Ns or kgms}^{-1}$	A1	1.1	Impulse on B	$= (\pm)1.2 \text{ Ns}$
		(±/1.2145 01 Kgills	AI	1.1		- (±)1.21 \ 3
					(Hence impulse B exerts on A is	
					(±)1.2 Ns)	
		in the opposite direction to A's original	A1	1.1	This statement oe needed for full	in the opposite direction to A's
		direction of motion			marks	original motion
			[3]			

	Questic	n	Answer	Marks	AO	Guidance		
4	(a)	(i)	Gain in KE = $\frac{1}{2} \times 4.2 \times 4.5^2$ (J)	M1	1.1	Correct formula for KE used.		
			Work done by force = 35×2.4 (J)	M1	1.1	Can be implied by awrt 42.5 Correct formula for WD by force used. Can be implied by awrt	Do not allow the assumption that the resistance is constant, e.g. by use	
			Energy lost = $84.0 - 42.5 = \text{awrt } 41.5 \text{ J}$	A1	1.1	84.0	of suvat, also in part (ii) SC2 if using suvat to find correct average resistance and hence total energy lost.	
1	(a)	(ii)	R = 41.5 / 2.4	[3] M1	3.1b	Their energy loss divided by 2.4		
4	(a)	(11)	So average resistive force is awrt 17.3 N	A1	1.1	Their energy loss divided by 2.4	SC1 only for 17.3N, if using	
				[2]			suvat/N2L	
4	(b)	(i)	Other resistive forces (eg air resistance) can	B1	3.3		"No friction" is not a valid answer	
	(1-7)	(-)	be ignored.				here	
			J	[1]				
4	(p)	(ii)	Need $\frac{1}{2} \times 4.2 \times 4.5^2 = 4.2gh$	M1	2.2b	Equating KE with PE (4.2 may be missing on both sides).	If "resistive force" term included then M0 unless recovered.	
			h = 1.033	A1	1.1	be missing on both sides).	then ivio unless recovered.	
			Distance = $1.033 / \sin 20^\circ = \text{awrt } 3.02 \text{ m}$	A1	1.1			
			Alternative method:		T	Correctly deducing the		
			$a = -g\sin 20^{\circ}$	M1		acceleration up the slope.		
			$0^2 = 4.5^2 + 2 \times -g \sin 20^\circ \times s$	M1		Using a suvat equation, or		
						equations, which lead(s) to s		
						from a and u given with $v = 0$ and consistent signs		
			Distance = awrt 3.02 m	A1		and consistent signs		
				[3]	T			

C	Question		Answer	Marks	AO	Guidance		
5	(a)		$[r] = L, [m] = M \text{ and } [U] = LT^{-1}$	B1	2.1	Correct dimensions for other		
			$[G] = \left[\frac{U^2 r}{m}\right]$	M1	1.1	parameters (<i>U</i> , <i>r</i> and <i>m</i>) soi (no need for them to be used for this mark to be awarded). Comparing dimensions, realising that 2 is dimensionless and rearranging	Could be done by dimensional analysis e.g. $[G] = L^{\alpha}M^{\beta}T^{\gamma}$ and equate indices using $U = \sqrt{\frac{2Gm}{r}}$ oe	
			$: [G] = (LT^{-1})^2LM^{-1} = L^3M^{-1}T^{-2}$	A1	2.2a	AG	•	
				[3]				
5	(b)		$[P] = (MLT^{-2}L)/T = ML^{2}T^{-3}$ Need LT ⁻¹ = $M^{\alpha}L^{2\alpha}T^{-3\alpha}M^{\beta}L^{\beta}T^{-2\beta}T^{\gamma}$	B1 B1	3.3 3.3	Using $P = WD/t$ oe Realising condition for equation to be dimensionally correct and substituting in dimensions.	ft errors in [P] and/or [W] here and in subsequent method marks provided M, L and T appear at least twice on the RHS	
			M: $\alpha + \beta = 0$, L: $1 = 2\alpha + \beta$	M1	3.4	Comparing to obtain equations in α and β		
			$\alpha = 1, \beta = -1$	A1	1.1			
			$T: -1 = -3\alpha - 2\beta + \gamma$	M1	3.4	Comparing to obtain equation in		
			w= 0	A1	1.1	γ		
			$\gamma = 0$	[6]	1.1			
5	(c)		Because $\gamma = 0$, the modelled minimum launch speed V does not depend on the time t for which the engines operate	B1ft [1]	3.5a	ie the modified model predicts that <i>V</i> does not vary when <i>t</i> varies	Or appropriate comment from their result, e.g. if $\gamma = -1$, then V is inversely proportional to t	

—	uestion		Marks	AO	Guidance		
6	(a)	$I = mu \Longrightarrow u = I/m$	B1	3.1b	Use of Impulse = change of momentum		
		Init PE = $mgr - mgrcos\frac{\pi}{3}$	M1	1.1	$(=\frac{1}{2}mgr)$. Attempt to use 'mgh' to find initial PE.	Could use eg edge as zero PE level (so init PE = $-\frac{1}{2}mgr$) but must be clear and signs consistent	
		$\frac{1}{2}mu^2 + \frac{1}{2}mgr = \frac{1}{2}mv^2 + mgr$	M1	1.1	Conservation of energy; KE & PE considered on both sides	,	
		$v^2 = u^2 - gr \Longrightarrow v = \sqrt{\frac{I^2}{m^2} - gr}$	A1	1.1	oe e.g. $v = \frac{\sqrt{I^2 - m^2 gr}}{m}$		
		Alternative method $u = I/m$	B1				
		$\Delta PE = mgr\cos\frac{\pi}{2} \ (=\frac{1}{2}mgr)$	M1				
		$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - \frac{1}{2}mgr$	M1		Subtract gain in PE		
		$v^2 = u^2 - gr \Longrightarrow v = \sqrt{\frac{I^2}{m^2} - gr}$	A1				
			[4]				
	(b)	$\frac{1}{2}mv^{2} = mgh \Longrightarrow h = \frac{1}{2g} \left(\frac{l^{2}}{m^{2}} - gr \right) = \frac{l^{2}}{2gm^{2}} - \frac{r}{2}$		1.1	oe e.g. $h = \frac{I^2 - m^2 gr}{2m^2 g}$		
	(-)	Consider the case where $h \to 0$	[1] M1	2 11-	12		
	(c)	Consider the case where $n \to 0$	IVII	3.1b	e.g. $\frac{I^2}{m^2} = gr$		
		maximum possible value of m is $\frac{I}{\sqrt{gr}}$	A1	3.5b			
	(->		[2]				
	(d)	Work done against $R = r\left(\frac{\pi}{2} + \frac{\pi}{3}\right)R$	M1	3.4			
		$\frac{1}{2}mu^{2} + \frac{1}{2}mgr = \frac{1}{2}mv^{2} + mgr + r\left(\frac{\pi}{2} + \frac{\pi}{3}\right)R$	M1	3.4	Revising the energy equation (condone incorrect initial energy	Could be expressed as an inequality at this stage: eg	
		or $\frac{I^2}{2m} + \frac{1}{2}mgr = \frac{1}{2}mv^2 + mgr + r\left(\frac{\pi}{2} + \frac{\pi}{3}\right)R$ Or			from (a)) to include an energy loss term (work done against R).	$\frac{1}{2}mu^2 + \frac{1}{2}mgr > mgr + r\left(\frac{\pi}{2} + \frac{\pi}{2}\right)$	
		$\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} - \frac{1}{2}mgr - r\left(\frac{\pi}{2} + \frac{\pi}{3}\right)R$			Could already be in terms of I rather than u .	$\left(\frac{\pi}{3}\right)R$	
		Need $v > 0$ so $I > \sqrt{m^2 gr + \frac{5\pi mrR}{3}}$	A1	1.1	AG		
			[3]				

Y533/01	Mark Scheme	October 2021
	mant concinc	

(e)	[I]=MLT ⁻¹	M1	1.1	Attempt dimensional analysis on	
	And			both sides.	
	$[RHS] = (M^2LT^{-2}L + MLMLT^{-2})^{1/2}$				
	Hence [RHS]=MLT ⁻¹ =[I] so the inequality is	A1	2.2a		
	dimensionally consistent				
		[2]			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

