

A Level Further Mathematics A Y545 Additional Pure Mathematics Sample Question Paper

MODEL Answers

Date - Morning/Afternoon

Time allowed: 1 hour 30 minutes

OCR supplied materials:

Printed Answer Booklet
Formulae A Level Further Mathematics A

You must have:

- Printed Answer Booklet
- Formulae A Level Further Mathematics A
- · Scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet.
- Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION

- The total number of marks for this paper is 75.
- The marks for each question are shown in brackets [].
- · You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of 12 pages. The Question Paper consists of 4 pages.

A curve is given by $x = t^2 - 2 \ln t$, y = 4t for t > 0. When the arc of the curve between the points where t=1 and t=4 is rotated through 2π radians about the x-axis, a surface of revolution is formed with surface area A.

Given that $A = k\pi$, where k is an integer,

· write down an integral which gives A and

need
$$\left(\frac{dx}{dt}\right)^{2} \& \left(\frac{dy}{dt}\right)^{2} : \frac{dx}{dt} = 2t - \frac{2}{t} \cdot \frac{dy}{dt} = 4$$

$$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = \left(2t - \frac{2}{t}\right)^{2} + 4^{2}$$

$$A = 2\pi \int_{a}^{b} y(t) \sqrt{\frac{dx}{dt}}^{2} + \frac{dy}{dt}^{2}} dt = 2\pi \int_{a}^{b} 4t \sqrt{\left(2t - \frac{2}{t}\right)^{2} + 1b} dt$$

$$= 2\pi \int_{a}^{b} 4t \sqrt{\left(4t^{2} - 8 + \frac{4t}{t^{2}}\right) + 1b} dt$$

$$= 2\pi \int_{a}^{b} 4t \sqrt{\left(4t^{2} + \frac{4t}{t^{2}} + 8\right)} dt$$

$$= 2\pi \int_{a}^{b} 4t \sqrt{\left(2t + \frac{2}{t}\right)^{2}} dt$$

$$k = 384$$

Find the volume of tetrahedron OABC, where O is the origin, A = (2, 3, 1), B = (-4, 2, 5) and C = (1, 4, 4).

$$V = \frac{1}{6} a \cdot b \times c$$

$$b \times c = \begin{vmatrix} \frac{1}{4} & \frac{1}{4} & \frac{k}{5} \\ 1 & 4 & 4 \end{vmatrix} = i(8-20) - j(-16-5) + k(-16-2)$$

$$= (-12, 21, -18)$$

$$V = \frac{1}{6} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -12 \\ 21 \\ -18 \end{pmatrix} = 3.5$$

3 Given
$$z = x \sin y + y \cos x$$
, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + z = 0$. [5]

$$\left(\frac{\partial z}{\partial x}\right)_{y} = \sin y - y \cos x$$
 $\left(\frac{\partial z}{\partial y}\right)_{x} = x \cos y + \cos x$
 $\frac{\partial^{2} z}{\partial x^{2}} = -y \cos x$ $\frac{\partial^{2} z}{\partial y^{2}} = -x \sin y$

$$\Rightarrow \frac{J^2 z}{J x^2} + \frac{J^2 z}{J y^2} + z = -y \cos x - x \sin y + x \sin y + y \cos x = 0$$

4 (i) Solve the recurrence relation
$$u_{n+2} = 4u_{n+1} - 4u_n$$
 for $n \ge 0$, given that $u_0 = 1$ and $u_1 = 1$. [4]

(ii) Show that each term of the sequence
$$\{u_n\}$$
 is an integer.

[2]

1. Characteristic equation:
$$\lambda^2 - 4\lambda + 4 = 0$$

 $\Rightarrow \lambda = 2 (x^2)$

general solution: Un=(A+Bn) x2"

"
$$A=1$$
, $B=-\frac{1}{2}$
 $U_n=(1-\frac{1}{2}n)\times 2^n$

$$U_n = (1 - \frac{1}{2}n) \times 2^n$$
ii. so $U_n = (2 - n) \times 2^{n-1}$

the product is made of two integers : Un is an integer

PhysicsAndMathsTutor.com In this question you must show detailed reasoning. 5

It is given that $I_n = \int_0^{\pi} \sin^n \theta \, d\theta$ for $n \ge 0$.

(i) Prove that
$$I_n = \frac{n-1}{n} I_{n-2}$$
 for $n \ge 2$.

(ii) (a) Evaluate I_1 . [2]

(b) Use the reduction formula to determine the exact value of $\int_0^{\pi} \cos^2 \theta \sin^5 \theta d\theta$. [2]

i.
$$I_{n} = \int_{0}^{\pi} \sin^{n}\theta \, d\theta \, d\theta = \int_{0}^{\pi} \sin\theta \cdot \sin^{n-1}\theta \, d\theta$$

$$= \left[-\cos\theta \cdot \sin^{n-1}\theta \right]_{0}^{\pi} - \int_{-\cos\theta}^{\pi} \cos\theta \cdot (n-1)\sin^{n-2}\theta \cdot \cos\theta \, d\theta$$

$$u = \sin^{n-1}\theta \quad \text{Using}$$

$$u' = (n-1)\sin^{n-2}\theta \cdot \cos\theta \quad \text{v} = -\cos\theta \quad \text{ff}(0) = uv - \int u'v \, d\theta$$

integration
by parts
$$\cos^{2}\theta$$

$$= \left(1 + \left(1 - 1 \right) \right) \int_{0}^{\pi} (1 - \sin^{2}\theta) \sin^{n-2}\theta \, d\theta$$

$$= \left(\left(h - 1 \right) \right) \int_{0}^{\pi} \left(1 - \sin^{2}\theta \right) \sin^{n-2}\theta \, d\theta$$

$$I_{n} = (n-1)(I_{n-2}-I_n)$$

$$\rightarrow nI_n = (n-1)I_{n-2}$$

$$\Rightarrow I_n = \frac{n-1}{n} I_{n-2}$$

ii.a)
$$I_1 = \int_0^{\pi} \sin\theta \, d\theta = \left[-\cos\theta\right]_0^{\pi} = 2$$

b)
$$\cos^2\theta = 1 - \sin^2\theta$$
: $I = \int_0^{\pi} (\sin^5\theta - \sin^7\theta) d\theta = I_5 - I_7$

$$I_n = \frac{h-1}{n} I_{h-2} \implies I_7 = \frac{b}{1} I_5, I_5 = \frac{4}{5} I_3, I_3 = \frac{2}{3} I_1$$

So
$$I = (1 - \frac{1}{7})I_5 = \frac{1}{7} \times \frac{4}{5}I_3 = \frac{1}{7} \times \frac{4}{5} \times \frac{2}{3}I_1$$

= $\frac{16}{105}$ using @

A surface S has equation z = f(x, y), where $f(x, y) = 2x^2 - y^2 + 3xy + 17y$. It is given that S has a single stationary point, P.

[5]

(b) Determine the nature of P.

[3]

(ii) Find the equation of the tangent plane to S at the point Q(1, 2, 38).

[2]

i. a)
$$f_x = 4x + 3y$$

$$f_y = -2y + 3x + 17$$

Stationary point >> set to D

$$4x+3y=0=-2y+3x+17$$

$$2 \times 0 + 3 \times 2$$
:
 $4 \times +9 \times +51 = 0$

$$2(-3)^{2}-4^{2}+3(-3)(4)+17(4)=34=2$$

b)
$$f_{xx} = 4 + f_{yy} = -2 + f_{xy} = f_{yx} = 3$$

Hessian:
$$|H| = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 3 & -2 \end{vmatrix} = -17$$

ii.
$$Z = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b)$$

$$= 38 + 10(x-1) + 16(y-2)$$

$$\implies 10x + 16y - Z = 4$$

In order to rescue them from extinction, a particular species of ground-nesting birds is introduced into a nature reserve. The number of breeding pairs of these birds in the nature reserve, t years after their introduction, is an integer denoted by N_t. The initial number of breeding pairs is given by N₀.

An initial discrete population model is proposed for N_t .

Model I:
$$N_{t+1} = \frac{6}{5} N_t \left(1 - \frac{1}{900} N_t \right)$$

- (i) (a) For Model I, show that the steady state values of the number of breeding pairs are 0 and 150. [3]
 - **(b)** Show that $N_{t+1} N_t < 150 N_t$ when N_t lies between 0 and 150. [3]
 - (c) Hence find the long-term behaviour of the number of breeding pairs of this species of birds in the nature reserve predicted by Model I when $N_0 \in (0, 150)$.

i. a)
$$N_{t+1} - N_t = \frac{1}{5} N_t - \frac{1}{750} N_t^2 = \frac{1}{750} N_t (150 - N_t)$$

define steady state value as M

$$\Rightarrow \frac{1}{750}M(150-M)=0$$
 Steady State: No Change between N₄ & N_{t+1}

$$M = 0 \text{ or } 150$$

b)
$$N_{t+1} - N_t = \frac{1}{750} N_t (150 - N_t)$$

$$N_t \in (0,150) \Rightarrow \frac{1}{750} N_t \in (0,\frac{1}{5})$$

as
$$150-N_{t}>0$$
 $\left(0< N_{t}<150\right), \frac{1}{750}N_{t}(150-N_{t})$

ranges between $0x & \frac{1}{5}x$ a +ve value

$$N_{t+1} - N_{t} < 150 - N_{t}$$
 $N_{t+1} - N_{t} = a \text{ fraction } \times (150 - N_{t})$

c) Nt+1-Nt>0 >> Nt increases & approaches 150 Without

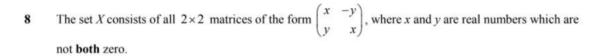
An alternative discrete population model is proposed for N_t .

Model II:
$$N_{t+1} = INT(\frac{6}{5}N_t(1 - \frac{1}{900}N_t))$$

- (ii) (a) Given that $N_0 = 8$, find the value of N_4 for each of the two models.
- [2]
- (b) Which of the two models gives values for N_t with the more appropriate level of precision? [1]
- ii. a) Model (I): $N_1 = 9.51467$ $N_2 = 11.29689$ $N_3 = 13.38611$ $N_4 = 15.82442$

Model
$$II$$
: $N_1 = 9$ $N_2 = 10$ $N_3 = 11$ $N_4 = 13$

b) the number of pairs must be an integer, ... model I is the better suited model as it is more realistic



(i) (a) The matrices
$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 and $\begin{pmatrix} c & -d \\ d & c \end{pmatrix}$ are both elements of X .

Show that $\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c & -d \\ d & c \end{pmatrix} = \begin{pmatrix} p & -q \\ q & p \end{pmatrix}$ for some real numbers p and q to be found in terms of a, b, c and d .

(b) Prove by contradiction that
$$p$$
 and q are not both zero. [5]

$$d \times 0 : a c d - b d^2 = 0$$

$$c \times 2$$
: $acd + bc^2 = 0$

subtract:
$$b(c^2+d^2)=0$$

$$CAd$$
 aren't both $0 \Rightarrow c^2 + d^2 \neq 0$, $b=0$

$$C \times O : ac^2 - bcd = 0$$

$$d \times 2$$
: $ad^2 + bcd = 0$

as before,
$$c\&d$$
 not both $0 \Rightarrow a = 0$ That $a\&b$ not both $0 \Rightarrow a = 0$ Assumption is false

11. part (i) gives closure condition, associativity given identity given when a=1, b=0

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & -(-b) \\ -b & a \end{pmatrix}$$

inverse is $\in X$: $\alpha^2 + b^2 \neq 0$ as $\alpha \neq b$ aren't both 0 iii $a = \cos(\frac{2\pi}{14}\pi)$, $b = \sin(\frac{2\pi}{14}\pi) \Rightarrow \text{Matrix generates}$ subgroup of rotations about 0 in increments of $\frac{2\pi}{12}\pi$

9 (i) (a) Prove that
$$p \equiv \pm 1 \pmod{6}$$
 for all primes $p > 3$.

(b) Hence or otherwise prove that
$$p^2 - 1 \equiv 0 \pmod{24}$$
 for all primes $p > 3$.

(ii) Given that
$$p$$
 is an odd prime, determine the residue of 2^{p^2-1} modulo p . [4]

(iii) Let
$$p$$
 and q be distinct primes greater than 3. Prove that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$. [5]

END OF QUESTION PAPER

i. a) if
$$p=0$$
 or 3 (mod 6) \Rightarrow multiple of 3
if $p=0,2$, or 4 (mod 6) then it is even
 $p=\pm 1 \pmod{6}$ i.e. Not prime
b) $p=6k\pm 1$
 $p^2-1=(6k\pm 1)^2-1=36k^2\pm 12k$
 $=12k(3k\pm 1)$
if k is even \Rightarrow 24112k

if k is even
$$\Rightarrow$$
 24/12k
if k is odd \Rightarrow 3k±1 is even so 24/12k(3k±1)

ii.
$$2^{p^2-1} = 2^{(p-1)(p+1)}$$

= $(2^{p-1})^{p+1}$
= $(1)^{p+1} \pmod{p} = 1$

iii.
$$p^{q^{-1}} \equiv 1 \pmod{q}$$
 $q^{p^{-1}} \equiv 0 \pmod{q}$
 $\Rightarrow p^{q^{-1}} + q^{p^{-1}} \equiv 1 \pmod{q}$

likewise, $p^{q^{-1}} + q^{p^{-1}} \equiv 1 \pmod{q}$

So, combine to give $p^{q^{-1}} + q^{p^{-1}} \equiv 1 \pmod{pq}$
 $\therefore \text{ HCF}(p,q) = 1$