Question								
Number	Scheme	Marks						
Q1	H_0 : $\mu = 80$, $H_{1:} \mu > 80$	B1,B1						
	$z = \frac{83 - 80}{\frac{15}{\sqrt{100}}} = 2$	M1A1						
	$\frac{15}{\sqrt{100}}$							
	$\sqrt{100}$ 2 > 1.6449 (accept 1.645 or better)	B1						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
	Reject H ₀ or significant result or in the critical region Managing director's claim is supported.	M1 A1						
	$1^{\text{st}} B1$ for H_0 . They must use μ not x , p , λ or \overline{x} etc							
	2^{nd} B1 for H ₁ (must be > 80). Same rules about μ .							
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept \pm .							
	May be implied by $z = \pm 2$							
	$1^{st} A1$ for $+ 2$ only							
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0228 or better) 2^{nd} M1 for a correct statement about "significance" or rejecting H_0 (or H_1) based on their z							
	value and their 1.6449 (provided it is a recognizable critical value from normal t their probability (< 0.5) and significance level of 0.05. Condone their probability > 0.5 compared with 0.95 for the 2 nd M1 2 nd A1 for a correct contextualised comment. Must mention "director" and "clain							
2 nd M1A1	and "use of Internet". No follow through. If no comparison or statement is made but a correct contextualised comment is given the M1 can be implied. If a comparison is made it must be compatible with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 is M0 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it condone -2 >-1.6449 provided their statement correctly rejects H ₀ .							
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = \text{awrt } 82.5$	5						
	$1^{\text{st}} \text{ M1} \text{for } 80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$							
	3 rd B1 for 1.645 or better							
	1 st A1 for awrt 82.5							

Question Number	Scheme	Marks
Q2	$[P \sim N(90,9) \text{ and } J \sim N(91,12)]$	
	$(J-P) \sim N(1,21)$ P(J < P) = P(J - P < 0)	M1, A1
	$= P\left(Z < \frac{0-1}{\sqrt{21}}\right)$ $= P(Z < -0.2182)$	dM1
	=1-0.5871=0.4129 awrt (0.413 ~ 0.414) calculator (0.4136)	A1 (4)
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$	M1
	$E(X) = 60 \times 91 - 60 \times 90 = 60$ [stated as $E(X) = 60$ or $X \sim N(60,)$]	B1
	$Var(X) = 60 \times 9 + 60 \times 12 = 1260$	A1
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$	M1
	= P(Z > 1.69030) $= 1 - 0.9545 = 0.0455$ awrt (0.0455)	A1 (5)
		9
(a)	1 st M1 for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$ 1 st A1 for variance of 21 (Accept 9 + 12). Ignore any slip in μ here. 2 nd dM1 for attempting the correct probability and standardising with their mean ar This mark is dependent on previous M so if $J - P$ (or $P - J$) is not being us If their method is not crystal clear then they must be attempting $P(Z < -ver)$	sed score M0 value) or
	P(Z > + ve value) i.e. their probability <u>after</u> standardisation should lead to a so e.g. $P(J - P < 0)$ leading to 0.5871 is M0A0 unless the M1 is clearly ear for awrt 0.413 or 0.414	
	The first 3 marks may be implied by a correct answer	
(b)	1 st M1 for a clear attempt to identify a correct form for <i>X</i> . This may be implied b variance of 1260	y correct
	B1 for $E(X) = 60$. Can be awarded even if they are using $X = 60J - 60P$. Allo	ow P - J and
	1 st A1 for a correct variance. If 1260 is given the M1 is scored by implication. 2 nd M1 for attempting a correct probability and standardising with 120 and their 6 If the answer is incorrect a full expression must be seen following through	their values
	for M1 e.g. $P\left(Z > \frac{120 - \text{their } 60}{\sqrt{\text{their variance}}}\right)$. If using -60, should get $P\left(Z < \frac{-1}{\sqrt{\text{their }}}\right)$	eir variance
Use of means	Attempt to use $\overline{J} - \overline{P}$ for 1 st M1, $E(\overline{J} - \overline{P}) = 1$ for B1 and $Var(\overline{J} - \overline{P}) = 0$ Then 2 nd M1 for standardisation with 2, and their 1 and 0.35).35 for A1

	: Statistics S3	
Question Number	Scheme	Marks
Q3 (a)	$E \sim N(0, 0.5^2)$ or $X \sim N(w, 0.5^2)$	
	$P(E < 0.6) = P(Z < \frac{0.6}{0.5}) \text{or} P(X - w < 0.6) = P(Z < \frac{0.6}{0.5})$ $= P(Z < 1.2)$ $= 2 \times 0.8849 - 1 = 0.7698 \text{awrt } 0.770$	M1
(b)	$\overline{E} \sim N\left(0, \frac{1}{64}\right) \qquad \text{or} \qquad \overline{X} \sim N\left(w, \frac{0.5^2}{16}\right)$ $P\left(\left \overline{E}\right < 0.3\right) = P\left(\left Z\right < \frac{0.3}{\frac{1}{8}}\right) \qquad \text{or} \qquad P\left(\left \overline{X} - w\right < 0.3\right) = P\left(\left Z\right < \frac{0.3}{\frac{1}{8}}\right)$	(2) M1
		M1, A1
	$= P(Z < 2.4)$ $= 2 \times 0.9918 - 1 = 0.9836$ awrt 0.984	A1 (4)
(c)	$35.6 \pm 2.3263 \times \frac{1}{8}$	M1 B1
	(35.3, 35.9)	A1,A1
		(4) 10
(a)	for identifying a correct probability (they must have the 0.6) and attempting standardise. Need . This mark can be given for 0.8849 - 0.1151 seen as f for awrt 0.770. NB an answer of 0.3849 or 0.8849 scores M0A0 (since it is M1 may be implied by a correct answer	inal answer.
(b)	1 st M1 for a correct attempt to define \overline{E} or \overline{X} but must attempt $\frac{\sigma^2}{n}$.	
	Condone labelling as E or X This mark may be implied by standardisation in the next line. 2^{nd} M1 for identifying a correct probability statement using \overline{E} or \overline{X} . Must have 0. 1^{st} A1 for correct standardisation as printed or better 2^{nd} A1 for awrt 0.984 The M marks may be implied by a correct answer.	3 and
Sum of 16,		$\times \frac{1}{4}$)
not means	2 nd M1 for identifying a correct probability. Must have 4.8 and	
	$1^{\text{st}} \text{ A}1$ for correct standardisation i.e. need to see $\frac{4.8}{\sqrt{4}}$ or better	
(c)	M1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$	
	B1 for 2.3263 or better. Use of 2.33 will lose this mark but can still score ³ / ₄ 1 st A1 for awrt 35.3 2 nd A1 for awrt 35.9	

Ques Numl						Schem	e					Mar	ks
Q4	(a)		Distance rank	1	2	3	4	5	6	7			
		_	Depth rank	1	2	4	3	6	7	5		M1	
			d	0	0	1	1	1	1	2		M1	
			d^2	0	0	1	1	1	1	4		IVII	
		$\sum d^2 =$	- 8									M1A1	
		r_{s}	$= 1 - \frac{6 \times 8}{7 \times 48}$ $= \frac{6}{7} = 0.857$									M1	
			$=\frac{6}{7}=0.857$	142						awrt ().857	A1	(6)
	(b)	$H_0: \rho =$	$=0, H_1: \rho > 0$)								B1	(0)
		Critical value at 1% level is 0.8929											
		$r_s < 0.8929$ so not significant evidence to reject H ₀ ,											
		The researcher's claim is not correct (at 1% level).										Alft	(4)
		or insufficient evidence for researcher's claim or there is insufficient evidence that water gets deeper further from inner bank.											(4)
			positive) co			-	_						10
	(a)	1^{st} M1 for an attempt to rank the depths against the distances 2^{nd} M1 for attempting d for their ranks. Must be using ranks.											
		3^{rd} M1 for attempting $\sum d^2$ (must be using ranks)											
		1 st A1 for sum of 8 (or 104 for reverse ranking)											
		4^{th} M1 for use of the correct formula with their $\sum d^2$. If answer is not correct an expression										ion	
		is required. 2 nd A1 for awrt (±) 0.857. Sign should correspond to ranking (so use of 104 should g -0.857)											
	(b)	1 st B1 for both hypotheses in terms of ρ , H ₁ must be one tail and compatible with their ranking											
		2 nd B1	for cv of	0.8929	(accept	<u>+</u>)							
		M1										hat cv <1	
		A1ft	for a cor "distance Follow t	e (from b	ank)" ar	nd "deptl	ı (of wat	er)"			and "cl	laim" <u>or</u>	
			Use of "	_			C) (prov.	1404 16 15	1011 11)				

Question Number				Scheme			Marks						
Q5	Income	Finances	Worse	Same	Better								
	Income Under £	15 000	10.54	10.54	12.92	34							
	-	and above		20.46	25.08	66	M1						
	210 000	4114 45014	31	31	38	100	A1						
	H ₀ : State of finances and income are independent (not associated)												
	H ₁ : State of finances and income are not independent (associated)												
	O_i	E_{i}	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	O_i^2									
		\mathbf{L}_{i}	E_{i}	E_i									
	14	10.54	1.1358	18.59									
	11	10.54	0.0200	11.48			M1						
	9	12.92	1.1893	6.269									
	17	20.46	0.5851	14.12			A1						
	20	20.46	0.0103	19.55									
	29	25.08	0.6126	33.53									
	$\sum \frac{(O_i - E_i)^2}{E_i} = 3.553 \text{or} \sum \frac{O_i^2}{E_i} - 100 = 103.553 100 = 3.553 \text{(awrt 3.55)}$												
	v = (3-1)(2-1) = 2												
	cv is 5.991												
	3.553 < 5.991 so insufficient evidence to reject H ₀ or not significant												
	There is no evidence of association between state of finances and income.												
	There is no evidence of association between state of finances and meonic.												
	Paw Total v Cal Total												
	1 st M1	for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by correct E_i											
	1 st A1	Grand Total											
	B1	for all expected frequencies correct for both hypotheses. Must mention "state" or "finances" and "income" at least the control of the control											
	D1						e at least offee						
	2 nd M1	Use of "relationship" or "correlation" or "connection" is B0 for at least two correct terms (as in 3^{rd} or 4^{th} column) or correct expressions wit E_i											
	2 nd A1		ect terms. Ma	y be implied b	y a correct ans	wer.(2 dp or be	tter-allow eg						
	3 rd M1		ct statement li	nking their tes	t statistic and t	heir cv Must l	be γ^2 not normal						
	for a correct statement linking their test statistic and their cv. Must be χ^2 for a correct comment in context - must mention "state" or "finances" and condone "relationship" or "connection" here but not "correlation". No foll e.g. "There is no evidence of a relationship between finances and income"												

Question Number				Sc	heme				Marks		
Q6	Distance centre of (m)	fsite		0-1 1-2		2-4 4-6 6		9-12			
	b-a		1		2	2	3	3	M1		
	No of arto $P(a \le X)$	< <i>b</i>)	$\frac{2}{1}$. 1	$\frac{44}{\frac{1}{6}}$	$\frac{37}{\frac{1}{6}}$	$\frac{52}{\frac{1}{4}}$	$\begin{array}{c c} 58 \\ \hline \frac{1}{4} \end{array}$	A1		
	$228 \times P(a \le a)$	X < b)	1	9 19	38	38	57	57	A1		
	Class	O_i	E_{i}	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{C}{I}$	$\frac{Q_i^2}{E_i}$					
	0-1	22	19	$\frac{9}{19} = 0.4736$. 25.5	57					
	1-2	15	19	$\frac{16}{19} = 0.8421$. 11.8	34			M1		
	2-4	44	38	$\frac{36}{38} = 0.9473$. 50.9	94					
	4-6	37	38	$\frac{1}{38} = 0.0263$. 36.0)2					
	6-9	52	57	$\frac{25}{57} = 0.4385$. 47.4	13			A1		
	9-12	58	57	$\frac{1}{57} = 0.0175$. 59.0)1					
	H ₀ : continuous uniform distribution is a good fit B1										
	H ₁ : <u>continuous uniform</u> distribution <u>is not</u> a good fit $\sum \frac{(O_i - E_i)^2}{E_i} = \frac{313}{114} = 2.75 \text{ or } \sum \frac{O_i^2}{E_i} - 228 = 230.745 228 = \text{ (awrt 2.75)}$										
	v = 6 - 1 = 5										
	$\chi_5^2(0.05) = 11.070$ (ft their ν i.e. $\chi_{\nu}^2(0.05)$)										
	2.75<11.070, insufficient evidence to reject H ₀										
	Continuous uniform distribution is a suitable model										
	1 st M1 for calculation of at least 3 widths and attempting proportions/probs. or for										
	seen 1 st A1 for correct probabilities										
	2 nd A1 for all correct expected frequencies										
	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct expressions or values.										
				their E_i prov							
	3^{rd} dM1 d	epende	ent on	et of cales - 3 rd 2 nd M1 for att	or 4 th colu	omn. (2 d	lp or better um or calc	and allow e	e.g. 0.94) st see at least 3		
	terms and +) The first three Ms and As can be implied by a test statistic of awrt 2.75 4 th M1 for a correct statement based on their test statistic (> 1) and their cv (> 3.8) Contradictory statements score M0 e.g. "significant" do not reject H ₀ .										
	.1		•	omment sugges	_	-					

Questio Number		Scheme	Marks					
Q7 (a)]	Label full time staff 1-6000, part time staff 1-4000	M1					
	1	Use random numbers to select	M1					
	5	Simple random sample of 120 full time staff and 80 part time staff	A1	(3				
(Enables estimation of statistics / errors for each strata <u>or</u> "reduce variability" <u>or</u> "more representative" <u>or</u> "reflects population structure" NOT "more accurate"	B1	(1				
((c)]	$H_0: \mu_f = \mu_p, H_1: \mu_f \neq \mu_p$ (accept μ_1, μ_2)	B1					
		s.e. = $\sqrt{\frac{21}{80} + \frac{19}{80}}$, $z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$	M1,M1					
		= 2.828 (awrt 2.83)	A1					
	-	Two tailed critical value $z = 2.5758$ (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1					
		[2.828 > 2.5758 so] significant evidence to reject H ₀	dM1					
	-	There is evidence of a difference in policy awareness between full time and part time staff	A1ft	(7				
(Can use mean full time and mean part time Normal	B1 B1	(2				
((e)]	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population						
		2.53 < 2.5758, not significant <u>or</u> do not reject H ₀ So there is insufficient evidence of a difference in mean awareness						
(Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.	B1	(1 1				
(2	1 st M1 for attempt at labelling full-time and part-time staff. One set of correct numb 2 nd M1 for mentioning use of random numbers 1 st A1 for s.r.s. of 120 full-time and 80 part-time	pers.					
((c)	1 st M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$						
	2	2 nd M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{g}+\frac{r}{s}}}$						
	2	dep. on 2 nd M1 for a correct statement based on their normal cv and their te for correct comment in context. Must mention "scores" or "policy awarenes of "staff". Award A0 for a one-tailed comment. Allow ft						
(for mention of mean(s) or use of \overline{X} , provided \overline{X} clearly refers to full-time for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1	or part-t	ime				
	, ,	for correct statement (may be implied by correct contextualised comment) for correct contextualised comment. Accept "no difference in mean scores".	Allow f	ì				
((g)	for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment h	ere.					