

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

# Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021

Question Paper Log Number P71287A

Publications Code WST03\_01\_2110\_MS

All the material in this publication is copyright

© Pearson Education Ltd 2021

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### **EDEXCEL IAL MATHEMATICS**

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

## **Special notes for marking Statistics exams (for AAs only)**

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

| Question<br>Number |                                                                                                                                                          | Scheme                                                                       |  |  |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1.                 | $H_0$ : $\mu = 30$ $H_1$ : $\mu < 30$                                                                                                                    |                                                                              |  |  |  |  |  |  |  |
|                    | $z = \frac{29.5 - 30}{\frac{2.5}{\sqrt{80}}}$                                                                                                            |                                                                              |  |  |  |  |  |  |  |
|                    | z = -1.7888 awrt-1.79                                                                                                                                    |                                                                              |  |  |  |  |  |  |  |
|                    | -1.788                                                                                                                                                   | -1.7888 < -1.6449                                                            |  |  |  |  |  |  |  |
|                    | Reject H <sub>0</sub> or significant result or in the critical region                                                                                    |                                                                              |  |  |  |  |  |  |  |
|                    | There                                                                                                                                                    | here is evidence to support the manager's claim.                             |  |  |  |  |  |  |  |
|                    |                                                                                                                                                          |                                                                              |  |  |  |  |  |  |  |
|                    | Notes                                                                                                                                                    |                                                                              |  |  |  |  |  |  |  |
|                    | <b>B</b> 1                                                                                                                                               | <b>B1</b> Both hypotheses correct in terms of $\mu$                          |  |  |  |  |  |  |  |
|                    | M1                                                                                                                                                       | for attempting test statistic, allow $\pm$ , Condone $\sqrt{\frac{2.5}{80}}$ |  |  |  |  |  |  |  |
|                    | <b>A1</b> awrt –1.79 allow $ z  = 1.7888$ Allow p value of 0.0367 or awrt 0.0368 or CR $\leq 29$                                                         |                                                                              |  |  |  |  |  |  |  |
|                    | B1  CV =1.6449 or better (Ignore any comparisons) Allow CR $\leq$ 29.54 SC If p value of 0.0367 or awrt 0.0368 award B1 if 2 <sup>nd</sup> A1 is awarded |                                                                              |  |  |  |  |  |  |  |
|                    | A1 For correct conclusion. Allow the manager's claim in words if it includes screws and le                                                               |                                                                              |  |  |  |  |  |  |  |

| Question<br>Number |                                                                                                                                                                                                                                                                              | Scheme                                                                                        |              |               |            |        |           |   |  | Marks      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|---------------|------------|--------|-----------|---|--|------------|
| 2                  | H <sub>0</sub> : Potassium has no effect on the quality of apple H <sub>1</sub> : Potassium has an effect on the quality of apple                                                                                                                                            |                                                                                               |              |               |            |        |           |   |  |            |
|                    | Grade<br>Expected<br>values                                                                                                                                                                                                                                                  | d                                                                                             | <i>A</i> 9.6 | <i>B</i> 67.2 | C<br>124.8 | D 24.0 | E<br>14.4 | - |  | M1A1       |
|                    | $\chi^{2} = \sum \frac{(O - E)^{2}}{E} = \frac{(9 - 9.6)^{2}}{9.6} + \dots + \frac{(3 - 4.4)^{2}}{14.4} \text{ or}$ $\chi^{2} = \sum \frac{O^{2}}{E} - N = \frac{9^{2}}{9.6} + \dots + \frac{3^{2}}{14.4} - 240$                                                             |                                                                                               |              |               |            |        |           |   |  |            |
|                    | = 10.657 awrt 10.7                                                                                                                                                                                                                                                           |                                                                                               |              |               |            |        |           |   |  |            |
|                    | Degrees of freedom = 4 $\chi^{2}_{40.05} = 9.488$                                                                                                                                                                                                                            |                                                                                               |              |               |            |        |           |   |  | B1<br>B1ft |
|                    | [Reject H <sub>0</sub> ] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect                                                                                                               |                                                                                               |              |               |            |        |           |   |  |            |
|                    |                                                                                                                                                                                                                                                                              |                                                                                               |              |               |            |        |           |   |  |            |
|                    | Notes  B1 Both hypotheses in context. May use other wording eg The grading of apples remains                                                                                                                                                                                 |                                                                                               |              |               |            |        |           |   |  | Total 8    |
|                    | M1<br>A1                                                                                                                                                                                                                                                                     | M1 A correct method to calculate expected values eg $0.04 \times 240$                         |              |               |            |        |           |   |  |            |
|                    | M1                                                                                                                                                                                                                                                                           | A correct method using their expected values to calculate $x^2$ . At least one correct of the |              |               |            |        |           |   |  | their      |
|                    | A1                                                                                                                                                                                                                                                                           | awrt 10.7                                                                                     |              |               |            |        |           |   |  |            |
|                    | B1 Degrees of freedom = 4 (may by be implied by 9.488)  B1ft 9.488 ft their DoF. If no DoF stated then this must be correct for their working.                                                                                                                               |                                                                                               |              |               |            |        |           |   |  |            |
|                    | 9.488 ft their DoF. If no DoF stated then this must be correct for their working.  ft their $\chi^2$ value provided the 2 <sup>nd</sup> M1 is awarded and CV. If no hypotheses or hypotheses or hypotheses or unique to award. Must include the word 'apples' or 'belief' oe |                                                                                               |              |               |            |        |           |   |  |            |

| Question<br>Number |                                                                                                                        |                                                                                    |          | Sch       | eme      |           |          |          |           |            |                     | Marks       |
|--------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------|-----------|----------|-----------|----------|----------|-----------|------------|---------------------|-------------|
| 3(a)               | jam                                                                                                                    | A                                                                                  | В        | C         | D        | Е         | F        | G        | Н         | I          |                     |             |
| 3(4)               | Pric                                                                                                                   |                                                                                    | 2        | 4         | 5        | 3         | 6        | 7        | 8         | 9          | -                   | M1          |
|                    | Taste                                                                                                                  | e 1                                                                                | 2        | 8         | 9        | 4         | 3        | 6        | 5         | 7          |                     |             |
|                    | $\sum d^2 = [$                                                                                                         | [0+0+]16                                                                           | 5+16+    | 1+9+      | 1+9+4    | 4[=56]    |          |          |           |            |                     | M1A1        |
|                    | $r_s = 1 - \frac{6(56)}{9(80)}; = \frac{8}{15} = 0.5333$ awrt 0.533                                                    |                                                                                    |          |           |          |           |          |          | dM1A1     |            |                     |             |
|                    |                                                                                                                        |                                                                                    |          |           |          |           |          |          |           |            |                     | (5)         |
| (b)                | $H_0: \rho = 0, H_1: \rho \neq 0$                                                                                      |                                                                                    |          |           |          |           |          |          |           |            | B1                  |             |
|                    |                                                                                                                        | $\frac{\text{Value} = 0.7}{\text{Value}}$                                          | C        | 1 .' 1    | . 1 .    | •         | 1.       | , c      | , 1       | •          |                     | B1          |
|                    | There is no evidence of a relationship between <u>price</u> and <u>taste</u> of strawberry jam                         |                                                                                    |          |           |          |           |          |          |           |            | B1ft (3)            |             |
| (c)                | $r = \frac{1}{\sqrt{2.0}}$                                                                                             | 16.4943<br>0455×243                                                                | .5556    |           |          |           |          |          |           |            |                     | M1          |
|                    | = 0.738                                                                                                                |                                                                                    |          |           |          |           |          |          |           |            | awrt 0.739          | A1          |
|                    |                                                                                                                        |                                                                                    |          |           |          |           |          |          |           |            |                     | (2)         |
| (d)                | $H_0: \rho = 0$                                                                                                        | $0, H_1: \rho$                                                                     | > 0      |           |          |           |          |          |           |            |                     | B1          |
|                    | CV = 0.5822                                                                                                            |                                                                                    |          |           |          |           |          |          |           | B1         |                     |             |
|                    | There is evidence of a <u>positive correlation</u> between <u>price</u> and <u>taste</u> of strawberry jam             |                                                                                    |          |           |          |           |          |          |           | B1ft       |                     |             |
|                    |                                                                                                                        |                                                                                    |          |           |          |           |          |          |           |            |                     | (3)         |
| (e)                | Spearman's rank as it is unlikely that a joint normal distribution applies.                                            |                                                                                    |          |           |          |           |          |          | B1        |            |                     |             |
|                    | or the marks are a judgement or the marks are not a meaningful scale.                                                  |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | 01 0110 1110                                                                                                           |                                                                                    |          | 01 0110   | 11101111 | <u> </u>  |          |          |           |            |                     | (1)         |
|                    |                                                                                                                        |                                                                                    |          |           |          |           | Notes    | 3        |           |            |                     | Total 14    |
| (a)                | M1 Attempt to rank each jar for taste and price. At least 4 pairs of ranks correct                                     |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | M1 For an attempt at $d^2$ row for their ranks (may be implied by $\sum d^2 = 56$ )                                    |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | $\mathbf{A1} \qquad \sum d^2 = 56$                                                                                     |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | dM1                                                                                                                    | dM1 Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{9(80)}$ |          |           |          |           |          |          |           |            |                     |             |
|                    | A1                                                                                                                     | $\frac{8}{15}$ or av                                                               | vrt 0.53 | 3         |          |           |          |          |           |            |                     |             |
| (b)                | B1 Both hypotheses stated in terms of $\rho$ . Must be two-tail.                                                       |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | <b>B1</b> 0.7 for CV. Allow 0.6 if a one tail test is used                                                             |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | B1ft                                                                                                                   | B1ft For a correct contextualised comment which has price and taste                |          |           |          |           |          |          |           |            |                     |             |
|                    | Follow through their $r_s$ with their 0.7 (provided   their $r_s$   < 1)                                               |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
| (c)                | M1                                                                                                                     | Correct r                                                                          |          | used      |          |           |          |          |           |            |                     |             |
| (d)                | A1                                                                                                                     | awrt 0.73                                                                          |          | ctated    | in terms | of a      | Must h   | one_ta   | il If RO  | ) awarde   | ed in part (b) the  | n allow any |
| (u)                | <b>B</b> 1                                                                                                             |                                                                                    |          |           |          | -         |          |          | п. п в(   | , a wai ut | ω 111 ματι (υ) tilt | ni anow any |
|                    | letter instead of $\rho$ that is consistent with part (b)<br><b>B1</b> 0.5822 Allow 0.6664 if a two-tail test is used. |                                                                                    |          |           |          |           |          |          |           |            |                     |             |
|                    | Correct conclusion in context which has positive correlation (this may be implied by                                   |                                                                                    |          |           |          |           |          |          | a correct |            |                     |             |
|                    | B1ft                                                                                                                   | descripti                                                                          | on of po | ositive c | orrelati | on), pri  | ce and t | aste. Fo | llow th   | rough th   | neir 0.5822 and     | 0.739       |
| (e)                | B1                                                                                                                     | Selecting reason                                                                   | g Spearr | nan's w   | ith a su | itable re | eason. D | o not al | llow 'be  | ecause it  | is ranked' as a     | suitable    |

| Question<br>Number |                                                                                                                                                                                         |                                                                                                                               | Scheme                                                                                                                             | Marks    |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| 4(a)               | Label the h                                                                                                                                                                             | nouses in area A                                                                                                              | 1 - 41, area B 1 – 164, area C 1 – 123 and area D 1 - 82                                                                           | M1       |  |  |  |  |  |  |
| , ,                | <u>Use random numbers</u> to select a                                                                                                                                                   |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | Simple random sample of $\underline{20}$ area $\underline{A}$ , $\underline{80}$ area $\underline{B}$ , $\underline{60}$ area $\underline{C}$ and $\underline{40}$ area $\underline{D}$ |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | 357×260 238×260                                                                                                                                                                         |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
| (b)                | $\frac{357 \times 260}{595}$                                                                                                                                                            | M1                                                                                                                            |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | 156 and 1                                                                                                                                                                               | 04                                                                                                                            |                                                                                                                                    | A1       |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                    | (2)      |  |  |  |  |  |  |
| (c)                |                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | Observed                                                                                                                                                                                | d Expected                                                                                                                    | $\frac{\left(O-E\right)^2}{E}$                                                                                                     |          |  |  |  |  |  |  |
|                    | 162                                                                                                                                                                                     | "156"                                                                                                                         | $\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$ | M1       |  |  |  |  |  |  |
|                    | 98                                                                                                                                                                                      | "104"                                                                                                                         | $\frac{\left(98 - "104"\right)^2}{"104"} = \frac{9}{26} = 0.3461$                                                                  |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | $\chi^2 = 4.657 + "0.2307" + "0.346"$                                                                                                                                                   |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | = 5.234 awrt 5.23                                                                                                                                                                       |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | v = (2-1)(3-1) = 2                                                                                                                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | $\chi_2^2(0.05) = 5.991 \implies \text{CR}:  \chi^2 > 5.991$                                                                                                                            |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | There is no evidence to suggest that there is an association between <u>age</u> and <u>listening</u> to <i>LSB</i>                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         |                                                                                                                               | Notes                                                                                                                              | Total 11 |  |  |  |  |  |  |
| (a)                | M1                                                                                                                                                                                      | For suitable lab                                                                                                              | belling of all four areas. E.g. for area A: $1-41$ or $0-40$                                                                       |          |  |  |  |  |  |  |
|                    | M1                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | <b>A1</b>                                                                                                                                                                               | For 20 A, 80B, 60C and 40 D (dependent on 2 <sup>nd</sup> M1 only)                                                            |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         | NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1.                                                           |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         | Allow M1: allocate random numbers to each house                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         | M1: arrange the numbers in order A1: select the 1 <sup>st</sup> 20 for area A, 80 for area B, 60 for area C and 40 for area D |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | SC If M0M0 scored then award B1 for 20 area A, 80 area B, 60 area C and 40 area D                                                                                                       |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
| (b)                | M1                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | <b>A1</b>                                                                                                                                                                               |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
| (c)                | M1                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | M1                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         | Adding the two values to 4.657 (may be implied by a full $\chi^2$ calculation, do not ISW)                                    |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | B1                                                                                                                                                                                      | A1 awrt 5.23<br>B1 2                                                                                                          |                                                                                                                                    |          |  |  |  |  |  |  |
|                    | B1ft                                                                                                                                                                                    | 5.991 or better                                                                                                               | ft their DoF                                                                                                                       |          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                         |                                                                                                                               | extual conclusion, which has the words age and listening dependent or                                                              | both M   |  |  |  |  |  |  |
|                    | marks being awarded.  NB if they give a p value of 0.0730 rather than the CV they can get M1M1B1B0A                                                                                     |                                                                                                                               |                                                                                                                                    |          |  |  |  |  |  |  |

| Question<br>Number |                              | Scheme                                                                                         | Marks   |
|--------------------|------------------------------|------------------------------------------------------------------------------------------------|---------|
| 5(a)               | $2.977 \pm 2$                | $2.5758 \times \frac{0.015}{3}$                                                                | M1,B1   |
|                    |                              | , 2.9898) awrt (2.964, 2.990)                                                                  | A1      |
|                    |                              |                                                                                                | (3)     |
| (b)                | The CI do                    | pes not contain the stated weight.                                                             | B1      |
|                    |                              |                                                                                                | (1)     |
| (c)                | 2.995-1                      | $.96 \times \frac{0.015}{\sqrt{n}} < 2.991$                                                    | M1      |
|                    | $\sqrt{n} < \frac{1.9}{2.9}$ | $96 \times 0.015$ $995 - 2.991$                                                                | M1d     |
|                    | $\sqrt{n}$ < awa             |                                                                                                | A1      |
|                    | n = 54                       |                                                                                                | A1cao   |
|                    |                              |                                                                                                | (4)     |
|                    |                              | Notes                                                                                          | Total 8 |
| (a)                | M1                           | $2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$                                           |         |
|                    | <b>B1</b>                    | awrt 2.5758                                                                                    |         |
|                    | <b>A1</b>                    | awrt (2.964, 2.990 (condone 2.99))                                                             |         |
| (b)                | <b>B1</b>                    | cao this must be consistent with their confidence interval                                     |         |
| (c)                | M1                           | Setting up an inequality using z value $> 1.5$ Condone =                                       |         |
|                    | M1d                          | Dep on previous M mark. Correct rearranging to get $\sqrt{n} < \dots$ or $n < \dots$ Condone = | or >    |
|                    | A1                           | awrt 7.35 may be implied by awrt 54                                                            |         |
|                    |                              |                                                                                                |         |

| Question<br>Number |                                                                                                    | Scheme                                                                                                                    | Marks      |  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| 6(a)               | $\bar{h} = 65.4$                                                                                   |                                                                                                                           | B1         |  |  |  |  |  |
|                    | $s^2 = \frac{214676 - 50 \times ("65.4")^2}{49}$                                                   |                                                                                                                           |            |  |  |  |  |  |
|                    | =16.6                                                                                              |                                                                                                                           | A1         |  |  |  |  |  |
|                    |                                                                                                    |                                                                                                                           | (3)        |  |  |  |  |  |
| (b)                | $H_0:\mu_{do} =$                                                                                   | $\mu_{ m do\ not}\  m H_1$ : $\mu_{ m do}<\mu_{ m do\ not}$                                                               | B1         |  |  |  |  |  |
|                    | $z = \pm \frac{1}{\sqrt{1 - \frac{1}{2}}}$                                                         | $\frac{"65.4"-70.8}{"16.693"} + \frac{29.6}{40}$                                                                          | M1M1       |  |  |  |  |  |
|                    | $= \pm 5.21$ awrt 5.21                                                                             |                                                                                                                           |            |  |  |  |  |  |
|                    | CV 1.6449                                                                                          |                                                                                                                           |            |  |  |  |  |  |
|                    | Amala's <u>belief</u> is supported                                                                 |                                                                                                                           |            |  |  |  |  |  |
|                    | CY                                                                                                 |                                                                                                                           | (6)        |  |  |  |  |  |
| (c)                |                                                                                                    | bles you to assume that (the sampling distribution of the sample mean of) resting is normally distributed for both groups | B1         |  |  |  |  |  |
| (4)                | Fook non                                                                                           | sylation/sample is independent an each male is independent of the other males                                             | B1 (1)     |  |  |  |  |  |
| (d)                | Each population/sample is independent <b>or</b> each male is independent of the other males.       |                                                                                                                           |            |  |  |  |  |  |
|                    | Assume the $\sigma_{do}^2 = s_{do}^2$ and $\sigma_{do \text{ not}}^2 = s_{do \text{ not}}^2$       |                                                                                                                           |            |  |  |  |  |  |
|                    |                                                                                                    |                                                                                                                           | (2)        |  |  |  |  |  |
| (a)                | 7.4                                                                                                | Notes                                                                                                                     | Total 12   |  |  |  |  |  |
| (a)                | <b>B</b> 1                                                                                         | 65.4 only                                                                                                                 |            |  |  |  |  |  |
|                    | M1                                                                                                 | Correct method to find $s^2$ using their $h$                                                                              |            |  |  |  |  |  |
| (1.)               | A1                                                                                                 | awrt 16.7                                                                                                                 |            |  |  |  |  |  |
| (b)                | B1 Both hypotheses correct - must be clear which is exercise and which is not                      |                                                                                                                           |            |  |  |  |  |  |
|                    | M1 For the denominator. Ft their 16.693 M1 Correct ft their 65.4 and 16.693                        |                                                                                                                           |            |  |  |  |  |  |
|                    | A1                                                                                                 |                                                                                                                           |            |  |  |  |  |  |
|                    | B1                                                                                                 | 1*1                                                                                                                       |            |  |  |  |  |  |
|                    | ft their z value and CV if the hypotheses are the correct way round. Correct conclusion in context |                                                                                                                           |            |  |  |  |  |  |
|                    | A1                                                                                                 | need belief. May be in words with heart and exercise e.g. resting heart rate is lower exercise regularly                  | in men who |  |  |  |  |  |
| (c)                | <b>B</b> 1                                                                                         | For the idea both groups normally distributed                                                                             |            |  |  |  |  |  |
| (d)                | <b>B</b> 1                                                                                         | For identifying the need for the groups <b>or</b> males to be independent.                                                |            |  |  |  |  |  |
|                    | B1                                                                                                 | Realising the $\sigma^2 = s^2$<br>Allow sample sizes big enough for CLT to hold                                           |            |  |  |  |  |  |

| Question<br>Number |                                                                                                                                                                          | Scheme                                                                                                                                | Marks        |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| 7(a)               | $E(B_1 -$                                                                                                                                                                | $(B_2) = 0$                                                                                                                           | B1           |  |  |  |  |  |
|                    | $\operatorname{Var}(B_1 - B_2) = 0.006$                                                                                                                                  |                                                                                                                                       |              |  |  |  |  |  |
|                    | $P( B_1 - B_2  > 0.1) = 2P(B_1 - B_2 > 0.1)$                                                                                                                             |                                                                                                                                       |              |  |  |  |  |  |
|                    | $= 2 \times P\left(Z > \frac{0.1}{\sqrt{0.006}}\right) \left[= 2 \times P(Z > 1.2909)\right]$                                                                            |                                                                                                                                       |              |  |  |  |  |  |
|                    |                                                                                                                                                                          | = 0.1967 awrt 0.197                                                                                                                   | A1 (5)       |  |  |  |  |  |
| (b)                | $\overline{B} \sim N$                                                                                                                                                    | $\left(1.96, \frac{0.003}{n}\right)$                                                                                                  | B1           |  |  |  |  |  |
|                    | $P(\overline{B} >$                                                                                                                                                       | $2) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01]$                                                                     | M1           |  |  |  |  |  |
|                    | $\sqrt{\frac{0.000}{n}}$                                                                                                                                                 | $\frac{6}{3} > 2.3263$                                                                                                                | B1<br>dM1    |  |  |  |  |  |
|                    | n = 11                                                                                                                                                                   |                                                                                                                                       | A1 (5)       |  |  |  |  |  |
| (c)                | $\mu_{M} = 21.8 + 500 \times 1.96 [= 1001.8] ; \sigma_{M}^{2} = 0.6 + 500 \times 0.003 [= 2.1]$                                                                          |                                                                                                                                       |              |  |  |  |  |  |
|                    | Let X = 4T - 3M                                                                                                                                                          |                                                                                                                                       |              |  |  |  |  |  |
|                    | $\mu_X = 4 \times 774 - 3 \times "1001.8" [= 90.6] ; \sigma_X^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$                                                               |                                                                                                                                       |              |  |  |  |  |  |
|                    | $P(4T - 3M > 100) = P(Z > \frac{100 - "90.6"}{\sqrt{"47.7"}}) [= P(Z > 1.361)]$                                                                                          |                                                                                                                                       |              |  |  |  |  |  |
|                    |                                                                                                                                                                          | = 0.0869 (table) or 0.08675 (calc)                                                                                                    | A1           |  |  |  |  |  |
|                    |                                                                                                                                                                          |                                                                                                                                       | (7) Total 17 |  |  |  |  |  |
| (a)                | B1                                                                                                                                                                       | For expected value being 0 written or used                                                                                            | 10(a) 17     |  |  |  |  |  |
|                    | <b>B</b> 1                                                                                                                                                               | For 0.006 being written or used for Variance                                                                                          |              |  |  |  |  |  |
|                    | M1                                                                                                                                                                       | Realising they need to consider both                                                                                                  |              |  |  |  |  |  |
|                    | M1 Correct standardisation using their 0.1 and 0.006 If the expected value and/or standard deviation not stated then they must be correct                                |                                                                                                                                       |              |  |  |  |  |  |
|                    | A1                                                                                                                                                                       | awrt 0.197                                                                                                                            |              |  |  |  |  |  |
| (b)                | B1                                                                                                                                                                       | The correct distribution written or used                                                                                              | _            |  |  |  |  |  |
|                    | M1 Correct standardisation. Allow using their distribution if stated but must contain $\sqrt{n}$ f                                                                       |                                                                                                                                       |              |  |  |  |  |  |
|                    | B1 Using awrt 2.3263 dM1 Dep on previous M being awarded using a z value, 2 < z < 3                                                                                      |                                                                                                                                       |              |  |  |  |  |  |
|                    | A1                                                                                                                                                                       | 11                                                                                                                                    |              |  |  |  |  |  |
| (c)                | M1                                                                                                                                                                       | Correct method for finding the mean of M                                                                                              |              |  |  |  |  |  |
|                    | M1 Correct method for finding the var of $M$ N1 Realising the need to find $AT = 3M$ or $AT = 3M = 100$ or $100 + 3M = 4T$                                               |                                                                                                                                       |              |  |  |  |  |  |
|                    | M1 Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$<br>M1 Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M$ |                                                                                                                                       |              |  |  |  |  |  |
|                    | M1 Correct method for finding the war of $X$ (using $4T = 3M = 100 = -9.4$ or $100 + 3M = 100$ ).                                                                        |                                                                                                                                       |              |  |  |  |  |  |
|                    | M1                                                                                                                                                                       | Correct standardisation using their mean of <i>X</i> and their standard deviation of <i>X</i> If the stated then they must be correct | ese are not  |  |  |  |  |  |
|                    | <b>A1</b>                                                                                                                                                                | awrt 0.0869 or 0.0868                                                                                                                 |              |  |  |  |  |  |