

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WST03_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCELIAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme								Marks	s			
1. (a)	Parrot		A	В	С	D	E	F	G	Н			
	Rank Age		3	6	2	1	7	8	4	5			
	Rank Bree	eder	5	6	4	1	8	7	2	3		$M1 \rightarrow$	1
	For finding the difference between each of the ranks and evaluating $\mathring{a} d^2 = 4 + 0 + 4 + 0 + 1 + 1 + 4 + 4 = 18$ For finding the difference between each of the ranks and evaluating $\mathring{a} d^2$										M1		
	$\mathring{a} d^2 = 18$										A1		
	$r_{\rm S} = 1 - \frac{60}{800}$	<u>(18)</u>	– 0 78	257142	o		Fc	r use c	of the c	orrect f	Formula with their $\mathring{\mathbf{a}} d^2$	dM1; ک	
	$r_{\rm S} = 1 - \frac{1}{8(8)}$	² - 1) ,			····						$\frac{11}{14}$ or awrt 0.786	A1	
													[5]
(b)	$H_0: \Gamma = 0,$								E	Both hy	potheses stated correctly	B1	
	Critical Val	lue = 0).8333	or C	R: $r_{\rm S}$	≥ 0.833 	33				Critical value of 0.8333	B1	
	Since $r_s = 0.7857$ does not lie in the CR (or $0.7857 < 0.8333$), do not reject H ₀ see notes										M1		
	 Either conclude that the <u>breeder does not</u> have the ability to correctly <u>order parrots</u> by age, after examining them. there is <u>insufficient evidence</u> that the <u>breeder</u> can correctly <u>order parrots</u> by age. 									Alft			
													[4] 9
								Notes					
(a)		allow	revers	e rank	ings)		or bree must b			s of ag	es. (At least 4 correct in e	ither row-	
	2 nd M1 3 rd dM1	is depe	enden	t on 1s	<i>t M1</i> fo	or use o	of 1	$\frac{6(18)}{8(8^2-1)}$	– with	their a	$\mathring{\exists} d^2$.		
(b)							s of r	,					
				e of 0.				,					
	M1	For a c	correc	t stater	nent re	lating	their $r_{_{ m S}}$	$ r_{S} <$	1) wit	h their	c.v. where their c.v. < 1		
		" <u>parro</u> All pre	<u>ts</u> ", w evious	hich co marks	onveys s in par	the ide t (b) m	ea that ust hav	the bre	eder ca	nnot o	n must mention " <u>breeder</u> ", rder them correctly. ard this one.	"order",	
	Note Follow through their r_S with 0.8333												
	Note Two-tailed test Applying a two-tailed test scores a maximum of B0B1M1A0 So Award SC B0B1 for $H_0: \rho = 0$, $H_1: \rho \neq 0$ followed by critical value $r_s = (\pm) 0$ and allow access to the M1 mark only.						0.881						
		and all	low ac	ccess to	the M	11 marl	conly.						

Question Number		Scheme									
2.			_	,		tional) message (independent) tional) message (dependent)	B1				
		. I			T	Some attempt at					
	Expected	A	В	C	Tot		M1				
	Male	27.106	41.373	38.52	10′	/					
	Female	29.893	45.626	42.48	118	8					
	Total	57	87	81	223	5	A1				
						At least 2 correct terms for					
	Observed	Observed Expected		$\frac{O^2}{E}$		$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$	1) (1)				
	25	27.11	0.1642	23.0542	2	expressions with their E_i .	dM1				
	37	41.37	0.4616	33.0916	5	Accept 2 sf accuracy					
	45	38.52	1.0901	52.5701	1	for the dM1 mark.					
	32	29.89	0.1489	34.2589		At least 5 correct					
	50	45.63	0.4185	54.7885		$\frac{(O-E)^2}{F}$ or $\frac{O^2}{F}$ terms to					
	36	42.48	0.9885	30.5085		L L	A1				
		Totals	3.2718	228.271		either 1 dp or better. Allow truncation.					
	<u> </u>	***************************************				For applying either					
	$X^2 = \mathring{a} \frac{(O - E)^2}{E}$ or $\mathring{a} \frac{O^2}{E} - 225 = \text{awrt } 3.27$ $\mathring{a} \frac{(O - E)^2}{E}$ or $\mathring{a} \frac{O^2}{E} - 225$										
						awrt <u>3.27</u>	A1				
	n = (2-1)(3-1) = 2 $n = 2$										
	$\chi_2^2(0.10) = 4$	$\chi_2^2(0.10) = 4.605 \Rightarrow \text{CR: } X^2 \geqslant 4.605$									
	[does not lie		t significant/	Do not rejec	et H ₀]						
	 Either conclude that there is insufficient evidence to support the headteacher's belief. there is no association between gender and inspirational message. (They are independent) 										
	Notes 1st B1 For both hypotheses. Must mention "gender" and "message" oe at least once. Use of "relationship" or "correlation" or "connection" or "link" is B0.										
	1 st M1	Can be implied by at least one correct E_i to 1 d.p.									
	. 1	At least 5 expected frequencies correct awrt or trunc. 2 d.p. [No fractions]									
	a d a a . e .	At least 5 correct terms to either 1 d.p. or awrt/trunc. 1.d.p. (may be implied by awrt 3.27)									
		Dependent of	n 2 nd M1 For	applying ei	ither	$\mathring{a} \frac{(O-E)^2}{F}$ or $\mathring{a} \frac{O^2}{F}$ - 225					
	Note	If awrt 3.27	is seen (fron	n a calculato		chout the expected frequencies stated then	n award				
	2 nd B1	special case M0A0M1A1M1A1. n = 2. This mark can be implied by a correct critical value of 4.605									
		4.605 or ft th		4.605							
						contextualised conclusion which is accept	ting H_0 .				
		Must mention either "headteacher's belief" or "gender" <i>and</i> "message". Contradictory statements score A0. E.g. "significant, do not reject H_0 "									
	Note	Condone "relationship" or "connection" here but not "correlation".									
	Note	Hypotheses t	he wrong wa	y round is A	40						

Question Number	Scheme	Marks				
3. (a)	$H_0: m = 30$ $H_1: m^{-1} 30$	B1				
	$z = \frac{28.2 - 30}{\frac{8.5}{\sqrt{75}}}; = -1.833936$ $\pm \frac{28.2 - 30}{\frac{8.5}{\sqrt{75}}} \text{ or equivalent.}$	M1;				
	awrt <u>-1.83</u>	A1				
	Two tailed c.v.'s $Z = \pm 1.6449$					
	or CR: $Z \le -1.6449$ or $Z \ge 1.6449$ or p-value = awrt 0.033 or awrt 0.034 < 0.05	B1				
	Fin the CR/significant/Reject H_0 /"[0.033, 0.034]" < 0.05]					
	Conclude either					
	• that the mean age of gym customers is not 30 years.	A1				
	that the manager's claim is not correct.					
(1.)	V: ([5]				
(b)	\overline{X} is (approximately) <u>normally distributed</u>	B1 [1]				
(c)	Assumed $s^2 = S^2$ or variance of sample = variance of population.	B1				
	Assumed § = 3 of variance of sample = variance of population.	[1]				
		7				
(a)	Notes 1st B1 Both hypotheses correct.					
	For standardising with 28.2, 30 and $\frac{8.5}{\sqrt{75}}$ (or awrt 0.981) [Allow use of $8.5 \times \sqrt{\frac{74}{75}}$ (=awread B1) 2nd B1 2nd A1 Critical value of -1.6449 (compatible with sign of their test statistic) or a correct probal comparison. Dependent on M1 scored for a correct contextualised comment which is rejecting H ₀ which is seed on their z-value and their critical value with compatible signs, where $1.64 \le \text{c.v.} \le 1.64 \le \text{c.v.} \le 1.$					
	Alternative method for the "M1A1B1" marks: Let \overline{X}_C be the critical value of the sample mean	an.				
	$-1.6449 = \frac{\overline{X}_C - 30}{\frac{8.5}{\sqrt{75}}}$ M1: For $\frac{c - 30}{\frac{8.5}{\sqrt{75}}} = -1.6449 / -1.645 / -1.64 / -1.65$ A1: $\overline{X}_C = \text{awrt } 28.4$					
	So $\overline{X}_C = 28.38883812$ B1: Critical value of -1.6449					
Note	One tailed test SC: Applying a one-tailed test scores a maximum of B0M1A1B1A0 (Allow ±1.2816 to score the 2 nd B1)					
(b)	Allow in words e.g "sample mean is normally distributed"					
(c)	B1 Also allow $s = S$ or standard deviation of sample = standard deviation of population	1.				

Question Number				Scheme				Marl	KS
4. (a)	$\hat{\lambda} = \frac{0(3)}{2}$) + 1(13) +	+ 2(14) + 3($\frac{(15) + 4(10)}{80}$	0 + 5(8) + 6(8) +	$\left\{-\frac{7(6)+8(3)}{6}\right\} =$	$\left \frac{280}{80} \right = 3.5*$	Blcso	*
							······		[1]
(b)	$r = 80 - \frac{e^{-3.5}(3.5)^3}{3!} = 17.26283752$ or $r = 80 - (0.5366 - 0.3208) = 17.264$								
			3.46 + 14.80 3.9733) = 1	2.136}		(= 2.14 or 2.13716}	M1	
					At least one	of either $r = aw$	rt17.26 or $s = \text{awrt } 2.14$	A1	
	r=1	7.26 (2dp	s = 2.14	(2dp)		Both awrt $r =$	17.26 and awrt $s = 2.14$	A1	
									[3]
(c)	-		oution is a s oution is no					B1	
	Щ			Comb	Comb	$(O F)^2$	O^2		
	# calls	O_{i}	E_{i}	O_i		$\frac{(O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$		
			2.42	O_i	E_{i}	E_{i}	E_i		
	0	3	2.42 8.46	16	10.88	2.4094	23.5294	M1	
	2	14	14.80	14	14.80	0.0432	13.2432	1111	
	3	15	17.26	15	17.26	0.2959	13.0359		
	4	10	15.10	10	15.10	1.7225	6.6225		
	5	8	10.57	8	10.57	0.6249	6.0549	M1	
	6	8	6.17	8	6.17	0.5428	10.3728		
	7 ≥8	6 3	3.08 2.14	9	5.22	2.7372	15.5172		
					Totals	8.3759	88.3759		
	$X^2 = \mathring{a}$	$\frac{(O-E)}{E}$	$\frac{1}{2}$ or \mathring{a}	$\frac{O^2}{E}$ - 80;	= awrt 8.38		awrt <u>8.38</u> or awrt <u>8.39</u>	A1	
	n = 7 - 1							B1ft	
	$v^2(0.05)$	$\lambda = 11.070$	\rightarrow CR: \sim	$X^2 > 11.07$	' 'O			B1ft	
								D110	
			significant						
	Poisson o	distributio	on is a <u>suita</u>	ble model.	(oe)			A1	
									[7]
					Note	06			11
(a)	B1cso*	At lea	ast 2 non-ze	ero products		vide by 80 to ac	hieve 3.5*		
(c)	1st B1			_		-	nce. Inclusion of 3.5 for	/ in is 1s	^t B0
	1st M1					s at both ends [f			
	2 nd M1						sions/values (to awrt/trun	cated 2 c	l.p.)
	1 st A1				s implies the b		1		
	2 nd B1ft				_		ibtract 2 from their n .		
	3 rd B1ft						ir <i>n</i> . (May see 9.488, 12.5	592, 14.0	67)
	2 nd A1						is accepting H ₀ .		
	Note						e wrong way round.		
	Note					'significant, do 1	not reject H ₀ "		
	Note	Cond	one the me	nuon of PC	(3.5) in conclu	ISION.			

Question Number	Scheme	Marks
5. (a)	Label beginners $1-452$, intermediates $1-251$, professionals $1-97$	M1
	<u>Use random numbers</u> to select a	M1
	Simple random sample of <u>28 beginners</u> , <u>16 intermediates</u> and <u>6 professionals</u> .	A1
(1.)		[3]
(b)	Any one of	D1
	Enables estimation of statistics/sampling errors for each strata. Padvaca variability. Produces variability.	B1
	Reduces variability. Management time of the population (a Great property).	[1]
	More representative of the population/reflects population structure	
(c)	$H_0: m_I - m_B = 3$ $H_1: m_I - m_B > 3$	B1; B1
	s.e. = $\sqrt{\frac{38.1}{60} + \frac{57.3}{80}}$ {= 1.162432794}	M1
	36.9 - 31.7 - 3	dM1;
	$z = \frac{36.9 - 31.7 - 3}{"1.1624"}$; = 1.89258 awrt 1.89	A1
	One tailed c.v. $Z = 1.6449$ or $CR : Z \ge 1.6449$ or p-value = awrt $0.029 < 0.05$	B1
	[in the CR/significant/Reject H ₀ /"0.029" < 0.05]	
	Conclude either that the	
	 mean score of intermediates is more than 3 greater than the mean score of beginners. (oe) manager's belief is correct. 	A1
		[7]
		11
	Alternative method for "2 nd M1, 1 st A1, 3 rd B1" marks: Let $D = \overline{x}_I - \overline{x}_B$	
	D - 3 dependent upon the 1 st M1 for	
	$1.6449 = \frac{D-3}{1.1624} = \frac{D-3}{1.1624} = 1.6449/1.645/1.64/1.65$	dM1:
	So, $D = 4.912$ $D = \text{awrt } 4.91 \text{ and } D_{\text{obs}} = 5.2$	A1
	$D_{\text{obs}} = 36.9 - 31.7 = 5.2 $ [1.64, 1.65]	B1

		Notes
(a)	1 st M1	for a suitable numbered/labelled list for each ability level
	2 nd M1	for use of random numbers/sample to select beginners, intermediates and professionals.
	A1	(dependent on either the 1 st or the 2 nd M1 mark)
		For <u>28 beginners</u> , <u>16 intermediates</u> and <u>6 professionals</u> .
(c)	1st B1	$H_0: m_I - m_B = 3 \text{ oe}$
	2 nd B1	$H_1: m_I - m_B > 3 \text{ oe}$
	Note	If m_1, m_2 used then it must be clear which one refers to intermediates/beginners.
	1 st M1	s.e. = $\sqrt{\frac{38.1}{60} + \frac{57.3}{80}}$. May be implied by s.e. = awrt 1.16
		Condone minor slips e.g. $\sqrt{\frac{38.1}{80} + \frac{57.3}{60}}$
	2 nd dM1	Dependent upon the 1 st M1. (follow through their s.e. if 1 st M1 mark has been awarded)
	1 st A1	awrt 1.89
	3 rd B1	$1.64 \le C.V. \le 1.65$ (compatible sign with their test statistic) or a correct probability comparison.
	2 nd A1	Dep. on all M1 and B1 marks scored for contextualised comment which is rejecting H_0 .

Question Number		Scheme		Ma	rks			
6. (a)	$\overline{x} = 230.5$	5; 95% confidence limits for <i>m</i> are						
	230.5	$5 \pm 1.96 < \frac{1.2}{\sqrt{5}}$	their $\overline{x} \pm z = \frac{1.2}{\sqrt{5}}$	M1				
			z = 1.96	B1 A1				
	=(229.44)	$\{0,1,2,,2,1,,2,1,,2,1,,1,1,1,1,1,$	At least one end-point is correct. Both end-points are correct.	A1				
	Both chu-points are correct.							
(b)	{ Let $X =$ number of confidence intervals that don't contain m }							
	$\{\text{So } X \sim \} \text{B(20,0.05)}$							
	P(X > 3)		A1					
	= 0.0159 awrt 0.0159							
					[3]			
					7			
		Notes						
(b)	M1	Writing or using either $X \sim B(20, 0.05)$ or Y	$\sim B(20,0.95)$					
	1st A1	$1 - P(X \le 3)$ or $1 - 0.9841$ or $P(Y \le 16)$. Can	n be implied by the final answer.					
	2nd A1	awrt 0.0159						

Question Number	Scheme	Marks
7. (a)	$A = \frac{X_1 + X_2 + X_3 + Y_1 + Y_2}{5}, X \sim N(30, 4.5^2), Y \sim N(20, 3.5^2); X, Y \text{ are independent.}$	
	$E(A) = \frac{3(30) + 2(20)}{5}$ or $Var(A) = \frac{3(4.5)^2 + 2(3.5)^2}{25}$ A correct method for finding $E(A)$ or $Var(A)$	M1
	E(A) = 26 or $Var(A) = 3.41$ At least one of either $E(A) = 26$ or $Var(A) = 3.41$	A1
	Both $E(A) = 26$ and $Var(A) = 3.41$	A1
	$\{\text{So } A \sim N(26, 3.41)\}$	
	$\left\{ P(A < 24) = \right\} P\left(Z < \frac{24 - 26}{\sqrt{3.41}} \right)$ Standardising (±) with their mean and their standard deviation	M1
	, -	
	= P(Z < -1.08306)	
	= 1 - 0.8599	M1
	= 0.1401 (or 0.139391) <u>0.14</u> or awrt <u>0.140</u> or awrt <u>0.139</u>	A1
(1.)	W N(202) N(W V A) 0.1 W V 1 1 4	[6]
(b)	$W \sim N(m, 2.8^2)$; $P(W - X < 4) = 0.1$ W, X are independent.	
	$\left\{ E(W - X) = E(W) - E(X) = m - 30 \right\} \triangleright E(W - X) = m - 30 \qquad E(W - X) = m - 30$	B1
	$\left\{ \text{Var}(W - X) = \right\} \ 2.8^2 + 4.5^2 \ \left\{ = 28.09 \right\} $ 2.8 ² + 4.5 ²	M1
	$\{\text{So }W - X \mid \text{N}(m-30, 28.09)\}$	
	$\left\{ P(W - X < 4) = 0.1 \right\} \implies P\left(Z < \frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} \right) = 0.1$	
	Standardising (\pm) with their mean which is in terms of m	
	$A_{-}(m-30)$ and their standard deviation and setting the result equal to	M1
	$\frac{4 - (m - 30)}{\sqrt{2 \cdot 8^2 + 4 \cdot 5^2}} = k \text{ (= -1.2816)}$ k, where k is in the interval [1.28, 1.29].	
	± 1.2816 or awrt ± 1.2816	B1
	Correct equation . See notes	A1
	$\{ m = 34 + 1.2816(5.3) \triangleright \}$ $m = 40.792 (= 40.784 \text{ from using } -1.28)$ awrt $\underline{40.8}$	A1
		[6]
	Notes	12
(a)	Notes 3 rd M1 For a probability tail compatible with 24 and their mean	
(b)	2 nd M1 Allow $\pm \frac{4 - \text{their } E(W - X)}{\sqrt{\text{their } Var(W - X)}} = k$, where $ k $ is in the interval [1.28, 1.29]	
	2 nd B1 For either -1.2816 or 1.2816	
	1st A1 E.g. Allow $\frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} = [-1.29, -1.28]$ or $\frac{(m - 30) - 4}{\sqrt{2.8^2 + 4.5^2}} = [1.28, 1.29]$	

Question Number		Scheme	Marks						
8.	X follows	s a continuous unform distribution over $\left[a+3,2a+9\right]$; $Y=\frac{2\overline{X}}{3}+k$							
(a)	$\left\{ \mathrm{E}(\overline{X}) = \right.$	$\left\{ \mathbf{E}(\overline{X}) = m \right\} = \frac{2a+9+a+3}{2}$							
		$= \frac{3a}{2} + 6 \text{ or } \frac{3a+12}{2} + \frac{1}{2} \text{ a.} \{\text{So } \overline{X} \text{ is a biased estimator.}\}$							
(b)	bias {=	bias $\left\{ = \frac{3a}{2} + 6 - a \right\} = \frac{1}{2}a + 6$ or $\frac{a+12}{2}$ (allow ±)							
(c)	$\begin{cases} E(Y) = \\ \end{cases}$	$\frac{2}{3}E(\overline{X}) + k = 3 \Rightarrow \begin{cases} \frac{2}{3}\left(\frac{3a}{2} + 6\right) + k = a \end{cases}$	[1] M1						
	($k = a \triangleright k = -4 \qquad k = -4$	A1 [2]						
(d)	$\hat{\hat{a}} = \frac{2}{3}$	$\overline{\overline{X}} - 4 \Rightarrow \hat{\beta} = \frac{2}{3}(7.8) - 4 = 1.2$	M1						
	Max valu	ae = 2(1.2) + 9	M1						
		= 11.4 or $11\frac{2}{5}$ or $\frac{57}{5}$	A1						
			[3] 8						
		Notes	0						
(a)	M1	Using the formula $\left(\frac{b+a}{2}\right)$ or obtaining $\frac{3a+12}{2}$ or $\frac{3a}{2}+6$							
	A1	$\frac{3a}{2} + 6$ or $\frac{3a+12}{2}$ and ¹ a.							
(b)	B1ft	bias = $\pm \left(\frac{1}{2}\partial + 6\right)$ or $\pm \left(\frac{\partial + 12}{2}\right)$ or ft their μ provided $\mu \neq \alpha$							
(c)	M1	Sets $\frac{2}{3}$ (their E(\overline{X})) + $k = a$. This mark can be implied.							
	A1	k = -4. Note that $k = -4$ with no working is M1 (implied) A1.							
(d)	1 st M1	An attempt to use the sample data given to find $\frac{2}{3}\bar{x}$ + "their k".							
		Allow full expression for \overline{x} or $\frac{\sum x}{n}$. (Note that from the data $\overline{x} = 7.8$)							
	2 nd M1	2 "their a " + 9 where their a is a function of the sample mean – which has been for applying $\frac{\sum x}{n}$ from the data values given in the question.	ound by						
	A1	11.4 cao							
	Note	2(10.6) + 9 = 30.2 is M0M0A0							