

Mark Scheme (Final)

Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042726
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WST03 Statistics 3 Mark Scheme

Question Number	Scheme	Mark	S
1. (a)	$\{w\} = 018 \text{ or } 18$	B1	
(b)	$\{x\} = 18$	B1	[1]
(0)	$\lambda = 10$	ы	F4.3
		2.	[1]
(c)	$\{\operatorname{prob} = \} 0$	B1	
(1)			[1]
(d)	Advantage: Any one of:		
	• <u>Simple or easy</u> to use also allow "quick" or "efficient" (o.e.)		
	• It is suitable for large samples (or populations)	B1	
	Gives a good spread of the data		
	Disadvantage: Any one of:		
	• The alphabetical list is (probably) <u>not random</u>		
	Biased since the list is not (truly) random	B1	
	• <u>Some combinations</u> of names are <u>not possible</u>		
		(TD 4	[2]
	N	(Tota	11 5)
	Notes		
(d)	If no labels are given treat the 1 st reason as an advantage and the 2 nd as a disadvantage 1 st B1: for advantage 2 nd B1: for disadvantage "it requires a sampling frame" is 2 nd B0 since the alphabetical list is given.	e	
	Note: Do not score both B1 marks for opposing advantages and disadvantages.		

Question					Schem	ne						Mark	S
Number		\overline{A}	В	C	L		R	S	T	Y			
2. (a)	Judge 1	A 6	D 3	1	L Q	$\frac{N}{2}$	Λ Q	ა 1	<i>1</i> 5				
2. (a)	Judge 2	6 8	4	5	7 7	3	9	1	5 2	6			
	or											M1	
	Judge 1 Judge 2	S	N	В	C	T	\boldsymbol{A}	Y	R	L			
	Judge 1	1	2	3	4	5	6	7	8	9			
	Judge 2	1	3	4	5	2	8	6	9	7			
	$\sum d^2 = 4 + 1$	1 + 1 +	4 + 1 +	-1 + 0	+9+1	l						M1	
	C	or $0 + 1$	1 + 1 +	1 + 9 -	+ 4 + 1	+1+4	1 = 22				$\sum d^2 = 22$	A1	
	$r_s = 1 - \frac{6(22)}{9(80)}$	$\frac{2}{2}$: = 0	81666	666							<i>1</i> 0	M1;	
	$r_s = 1$ 9(80))) , – 0	.01000								$\frac{49}{60}$ or awrt 0.817	A1	
(b)	$\mathbf{H}_{0}: \boldsymbol{\rho} = 0 ,$	$H_1: \rho$	> 0									B1	[5]
	Critical Valu	e = 0.7	833 <u>or</u>	CR:	$r_s \geqslant 0$	0.7833					0.7833	B1	
	Since $r_s = 0$.	8166	it lies	in the	CR,	<u>or</u> reje	ct H ₀	(o.e.)				M1	
	The two judg there is a pos		•					e two <u>i</u>	udges.			A1ft	
	_							-	_				[4]
						N.T	. 4					(Total	19)
(a)	Notes 1 st M1 for an attempt to rank at least one row (at least 4 correct)												
(4)			_							=22 c	or 221 for reverse ranks	3)	
	1 st A1 for	$\sum d^2 =$	= 22 (o	r 221 i	f rever	se rank	ing is	ised) (Can be	implie	d by correct answer.		
	3 rd M1 for u	ise of th	he corre	ect for	mula w	ith the	$\lim \sum d$	² (if it	is clea	rly stat	ed)		
	If th	ne answ	ver is n	ot corr	ect the	n a cor	rect ex	pressio	on is re	quired			
False Ranking	e.g Alphabe	etic ran	king: C	Sives						\sum	$d^2 = 162$ and $r_s =$	-0.35	
	Scores: M0(Scores: M0(for ranking), M1(for attempt at d^2 row), A0, M1 (for use of their $\sum d^2$), A0 i.e.										e. 2 out of	: 5
			O , -	·			w thro						
(b)						-		-	-		ust be compatible with but compatible sign w	_	r_s)
	M1: for a co												
	e.g. "re							-					
cv >1	May be If their o								ward N	//0A0			
15.15.2						-					are in <u>agreement</u> " (o.e.)) for A1ft	
					_					_	ges don't agree" (o.e.)		
	A1ft: for a c					_			wii	- <u>J~~</u>	<u></u> <u></u> (0.0.)		
	"posi	tive co	rrelatio	n" alo	ne scor	es M1	A0		araama	nt''			
	Lot I	everse 1	anking	SHOUL	u sun s	say Ji	iuges <u>a</u>	<u>10</u> III a	greeme	iil			

Question Number	Scheme										
3. (a)	$\widehat{\lambda} = \frac{0(47) + 10}{2}$	(57) + 2(46) - 20	+ 3(35) + 4(9 0	$\frac{(1)+5(6)}{20} = \frac{320}{20}$	$\frac{0}{0} = 1.6$ *	Full exp' or at products and 3		B1 *			
(b)	$r = 200 \times \frac{e^{-1.6}}{}$	$\frac{(1.6)^2}{2!}$ {= 51.	.68550861}		Us	sing $r = 200$	$\times \frac{e^{-1.6}(1.6)^2}{2!}$	M1	[1]		
	s = 200 - (40.	38 + 64.61 +	their $r + 27.5$	57 + 11.03) {=	4.72449139	} or their	r + s = 56.41	M1			
	r = 51.685508			•		51.69 and s		A1	[3]		
(c)	 H₀: Poisson (distribution) is a suitable/ sensible (model) H₁: Poisson (distribution)is not a suitable/ sensible (model). 										
	Number of accidentsObservedExpectedCombined ObservedCombined Expected $\frac{(O-E)^2}{E}$ $\frac{O^2}{E}$										
	0	47	40.38	47	40.38	1.0853	54.7053				
	$\frac{1}{2}$	57 46	64.61 51.69	57 46	64.61 51.69	0.8963 0.6264	50.2863				
	3	35	27.57	35	27.57	2.0024	44.4324				
	4	9	11.03								
	≥ 5	6	4.72	15	15.75	0.0357	14.2857	M1			
					Totals	4.6461	204.6461				
	$X^2 = \sum \frac{(O - I)^2}{I}$	$(E)^2$	$r O^2$. 16161				M1;			
	A = Z - B	\overline{E} or Z	$\frac{E}{E}$ – 200	;= 4.0401			awrt 4.65	A1			
	v = 5 - 1 - 1 =	3					3	B1 ft			
	$\chi_3^2(0.10) = 6.2$						6.251	B1 ft			
	[Since $X^2 = 4$.	.6461 does no	ot lie in the C	R, then there is	insufficient	evidence to re	eject H ₀]				
	The number of <i>accidents</i> per day can be modelled by a Poisson distribution <u>or</u> the <i>supervisor's</i> belief is correct.										
	the supervisor is contect.										
(1-)	Note: Note: Allow A1 for $s = \text{awrt } 4.74$ (found as a result of using expected values to full accuracy.)										
(b)			•			ected values t	o full accuracy	y.)			
(c)	1 st B1: for <u>both</u> hypotheses and mentioning Poisson at least once. Allow Poisson is a "good fit/model" but <u>not</u> "good method"										
			•	potheses is B0	_		l .				
	1 st M1: For a	n attempt to p	ool 4 accider	ints and $\geqslant 5$ acc	cidents <u>or</u> poo	ol when $E_i < 3$	No pooling	is M0			
	2 nd M1: For an 1 st A1: For a			c, at least 2 co if awrt 4.65 sec		ons/values (to	o awrt 2 d.p.)				
No pooling				if $X^2 = 5.33$ is	seen						
	2 nd B1ft: For	n-1-1 i.e.	subtracting 2	2 from their n .			B1B1 may be in				
	3 rd B1ft: For a	correct ft for	their $\chi_k^2(0.1)$	0), where $k =$	n-1-1 from		6.251 (if poolin for no pooling	g) or /./	/9		
	2 nd A1ft: (<i>Dep</i>	. on the 2^{nd} N	11) For corre	ect comment in	context base			heir crit	ical		
				or <i>supervisor</i> .							
				.g. "significant							
	Note: Full acc	curacy gives a	combined ex	spected frequer	ncy of 15.76,	$\frac{(O-E)^2}{F} = 0$	$0.0366, \frac{O^2}{E} = 1$	14.2766	,		
		64855 and				L.	£				

Question Number	Scheme		Marks
4. (a)	Let $X =$ weight of a sack of potatoes, $X \sim N(25.6, 0.24^2)$		
		Attempt at D and $D \sim N(0,)$	M1
	So $D = X_1 - X_2 \sim N(0, 2(0.24)^2)$ or $D \sim N(0, 0.1152)$	$(0.24)^2 + (0.24)^2$; 0.1152	A1; A1
	${P(D > 0.5) = } 2P(D > 0.5)$	$2 \times P(D > 0.5)$ can be implied	dM1
	$= 2 \times P\left(Z > \frac{0.5}{\sqrt{0.1152}}\right)$		dM1
	$= 2 \times P(Z > 1.4731) \underline{or} = 2(1 - 0.9292)$		
	= 0.1416	awrt 0.141 or awrt 0.142	A1
	V - V - 11 - C - 11 - V - N/20 0 - 0.22 ²		[6]
(b)	Let $Y =$ weight of an empty pallet, $Y \sim N(20.0, 0.32^2)$		
	So $T = X_1 + X_2 + \dots + X_{30} + Y$	30(25.6) + 20 or 788	B1
	$T \sim N(30(25.6) + 20, 30(0.24)^2 + 0.32^2)$	$30(0.24)^2 + 0.32^2$	M1
	$T \sim N(788, 1.8304)$	N and 1.8304 or awrt 1.83	A1
		Trana 1.0501 of awit 1.05	
	${P(T > 785) = } P\left(Z > \frac{785 - 788}{\sqrt{1.8304}}\right)$		M1
	= P(Z > -2.2174)		
	= 0.9868	awrt 0.987	A1
			[5] (Total 11)
	Notes		(Total II)
(a)	1 st M1: For clear definition of <i>D</i> and normal distribution wi	th mean of 0 (Can be implied by	3 rd M1)
	1 st A1: for correct use of Var($X_1 - X_2$) formula		
	2^{nd} A1: for 0.1152 2^{nd} dM1: For realising need $2 \times P(D > 0.5)$ (Dependent on 1	St M1 i.a. must be using suitable I	3)
	3^{rd} dM1: Dep on 1st M1 for standardising with 0.5, 0 and the		
	P($Z > 1.47$) implies 1 st M1 1 st A1 2 nd A1 and 3 rd M1		1 (0.0.)
	Correct answer only will score 6 out of 6		
(b)	B1: For a mean of $30(25.6) + 20$. Can be implied by 78	88	
	1st M1: For $30(0.24)^2 + 0.32^2$. Can be implied by 1.8304 or		
	Allow M1 for swapping error i.e. $30 \times 0.32^2 + 0.24^2$		
	1 st A1: For normal and correct variance of 1.8304 or awrt 1.8		
	Normality may be implied by standardisation	0.04	
	2 nd M1: For standardising with 785 with their mean and st. de	ev($\neq 0.24$) Must lead to P(Z >	-ve) oe.
	2 nd A1: awrt 0.987 Correct answer only will score 5 out of 5		
	Note: Calculator answers are (a) 0.14071, (b) 0.98670.		

Question Number	Scheme								Ma	rks	
5.	H_0 : Grades and gender are independent (or not associated) "grades" and "gender" H_1 : Grades and gender are dependent (or associated) mentioned at least once.										
	Observe	d	Male Female					An attempt to convert percentages			
	Distinction	n	37		44			to observed frequencies.	M1		
	Merit		127		96						
	Unsatisfact	ory	36		20			All observed frequencies are correct.	A1		
	Expected	d	Mal	e	Female	e	Totals	Some attempt at (Row Total)(Column Total)	M1		
	Distinction	n	45		36		81	(Grand Total)	IVII		
	Merit		123.8	89	99.111		223	Can be implied by a correct E_i			
	Unsatisfact Totals	ory	31.11		24.889 160)	56 360	All expected frequencies are correct to nearest integer.	A1		
		1				I_		At least 2 correct terms for			
	Observed	Ex	pected	pected (O			$\frac{O^2}{E}$	$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$	M1		
	37		45		1.422	3	30.422	expressions with their E_i .	1,11		
	44		36		1.778		53.778	Accept 2 sf accuracy for the M1 mark.			
	127	12	3.889		0.078	1	30.189				
	96		9.111		0.098	9	92.987	All correct $\frac{(O-E)^2}{F}$ or $\frac{O^2}{F}$ terms			
	36				0.768	-	41.657	to either 2 dp or better.	A1		
	20	24			0.960		16.071	Allow truncation.			
			Totals					(⇒by awrt 5.1 if 3^{rd} M1 seen)	A1		
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$; = awrt 5.1 awrt 5. V = (3-1)(2-1) = 2 (Can be implied by 5.991)									(7)	
	`	,		2		$(\nu =)$ 2 (Can be implied by 5.991)	B1 B1				
	$\chi_2^2(0.05) = 5.991 \Rightarrow \text{CR: } X^2 \geqslant 5.991$ For 5.991 only										
	Since $X^2 = 5.1$ does not lie in the CR, then there is insufficient evidence to reject H_0										
	Business Studies <u>grades</u> and <u>gender</u> are independent <u>or</u> There is no association between Business Studies <u>grades</u> and <u>gender</u> . <u>Or</u> Head of department's (balief) is correct										
	<u>Head of department's</u> (belief) is correct										
	Notes										
	Final M1: For a correct statement linking their test statistic and their critical value (> 3.8) Note: Contradictory statements score M0. E.g. "significant, do not reject H ₀ ".										
	C	must Condo	mention one "rela	"gra tions	des" and 'ship" or "c	"gen conn	der" or "s ection" he	ex" or "head of department" re but not "correlation". between grades and gender"			
5.10 only	Just seei	ng 5.	10 onl	y car	imply 1st	^t 3 M	Is but lose	s 1 st 3 As so can score 4 out of 7 (Qu says	s "show	·")	
	Note: Full a	ccur	acy give	es X	$X^2 = 5.104$	1356	and p-v	value 0.0779			

Question Number				Sc	cheme			Marks				
5.	Mark Scheme for candidates who use percentages instead of observed values.											
	H ₀ : Grades and gender are independent (or not associated) "grades" and "gender" H ₁ : Grades and gender are dependent (or associated) mentioned at least once.											
	Observed Male Female											
	Distinction	n			27.5		These marks cannot be obtained.	M0 A0				
	Merit		63.5	5	60.0							
	Unsatisfact	ory	18.0)	12.5							
		- 1			I.		Sama attampt at					
	Expected	1	Male	<u> </u>	Female	Totals	Some attempt at (Row Total)(Column Total)					
	Distinction		23		23	46	(Grand Total)	M1				
	Merit	111	61.7	5	61.75	123.5	Can be implied by one of these E_i 's					
	Unsatisfact	orv	15.2		15.25	30.5						
	Totals	Ory	100		100	200	Expected frequencies are not correct.	A0				
	Totals		100		100	200						
				$(O F)^2$			At least 2 "correct" terms for $(O - F)^2 - O^2$					
	Observed	ved Expected		$\frac{(O-E)^2}{E}$		$\frac{O^2}{E}$	$\frac{(O-E)^2}{F}$ or $\frac{O^2}{F}$ or correct					
	18.5	23			0.8804	14.8804	expressions with their E_i .	M1				
	27.5		23		0.8804	32.8804	Accept 2 sf accuracy					
	63.5				0.0496	65.2996	for the M1 mark.					
	60.0		1.75		0.0496	58.2996						
	18.0		5.25		0.4959	21.2459	This most sonnot be obtained	4.0				
	12.5		5.25			10.2459	This mark cannot be obtained	A0				
		Totals			2.8518	202.8518	1					
	$X^{2} = \sum \frac{(O-E)^{2}}{E} \text{or} \sum \frac{O^{2}}{E} - 360 = 2.8518$ This mark cannot be obtained.											
	v = (3-1)(2-1) = 2 (<i>v</i> =) 2 (Can be implied by 5.991)											
	$\chi_2^2(0.05) = 5.991 \Rightarrow \text{CR}: \ X^2 \geqslant 5.991$ For 5.991 only											
	Since $X^2 = 2$	2.86	loes not	lie i	n the CR, t	hen there is	insufficient evidence to reject H ₀	M1				
							Not available since comes from incorrect working.	A0				
	g.											
	TC						otes					
		If a candidate uses percentages rather than observed values then they can obtain a maximum of They can get B1 M0A0 M1A0 M1A0A0 B1B1M1A0.										

Question Number	Scheme	Marks
6. (a)	$\left\{ \hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \right\} \overline{x} = 31.4$ $\left\{ \hat{\sigma}^2 = \frac{\sum x^2 - n\overline{x}^2}{n - 1} = \right\} s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1}$	B1 cao
	$\left\{ \hat{\sigma}^2 = \frac{\sum x^2 - n\overline{x}^2}{n - 1} = \right\} s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1}$	M1 A1ft
	= 3.460816 awrt 3.46	A1 [4]
(b)	[Let $Y =$ time taken to complete obstacle course in the afternoon.] $H_0: \mu_x = \mu_y$, $H_1: \mu_x > \mu_y$	B1
		DI
	$ (z =) \frac{"31.4" - 30.9}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}} $	M1 A1ft
	= 1.38781 awrt 1.39	A1
	CR: $Z \ge 1.6449$ or probability = awrt 0.082 or awrt 0.083 1.6449 or better	B1
	Since $z = 1.38781$ does not lie in the CR, then there is insufficient evidence to reject H ₀ Conclude that the <u>mean time</u> to complete the obstacle course is the same for the early <u>morning</u>	M1
	and late <u>afternoon</u> .	A1
		[7]
(c)	\overline{X} and \overline{Y} are both approx. normally distributed or $\overline{X} - \overline{Y}$ normal (Condone \overline{x} and \overline{y})	B1
(d)	Have assumed $s^2 \simeq \sigma^2$ or variance of sample \simeq variance of population	[1] B1
		[1] (Total 13)
	Notes	
(a)	B1: 31.4 cao Allow 31 minutes, 24 seconds. 1 st M1: A correct expression for either s or s ² (ignore label)	
	1 st A1ft: A correct expression for s^2 with their ft \overline{x} .	
	3 rd A1: awrt 3.46 (Correct answer scores 3 out of 3)	
(b)	1 st B1: Both hypotheses stated correctly, with some indication of which μ is which. Eg:	$\mu_{\scriptscriptstyle M}$, $\mu_{\scriptscriptstyle A}$
	1 st M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 3 of a, b, c or d correct. Allow \pm	
	$1^{\text{st}} \text{ A1ft: for } \pm \frac{\text{their } 31.4 - 30.9}{\sqrt{\frac{\text{their } 3.46}{50} + \frac{3.03}{50}}} \text{ Allow } D = \overline{x} - \overline{y} \qquad 1.64 \sim 1.65 = \frac{D - 0}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}} \text{ [SE = 0]}$.360277]
	2^{nd} A1: for awrt 1.39 (possibly \pm)(Allow for CV $D = \text{awrt } 0.593$) (NB $d = 0.5$)	,
	Correct answer scores M1A1ftA1 <u>but</u> $0 - (31.4 - 30.9) \rightarrow -1.39$ loses this 2 nd A ma	
	2 nd B1: Critical value of 1.6449 or better (seen). Allow for probability = awrt 0.082 or awrt 0 Note: p-values are 0.0823 (tables) and 0.0826 (calculator).	.083
	2 nd M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H ₀ ".	
	3 rd A1: For a correct statement in context that accepts H ₀ (no ft) Condone "no difference in me Must mention "mean time", "morning" and "afternoon" or "both times of day"	
(c)	B1 E.g. $\overline{X} \sim N()$ need both. Allow in words e.g "sample means are normally distributed	l"
(d)	B1 condone only mentioning "x" or "y" but watch out for $s_x = s_y$ or $\sigma_x = \sigma_y$ which scores	В0

Number 7. Let $X = \text{score on a die}$ $E(S) = 3.5$ $E(S)$		Scheme	Marks
(a) $E(S) = 3.5$, $Var(S) = \frac{35}{12}$ $E(S) = 3.5$ B1 (b) $So, \overline{S} \sim N \begin{pmatrix} "3.5", \frac{(35)}{12}" \\ \hline Var(S) = \frac{35}{12} \end{pmatrix}$ or awrt 2.92 B1 (b) $So, \overline{S} \sim N \begin{pmatrix} "3.5", \frac{(35)}{12}" \\ \hline Var(S) = \frac{35}{12} \end{pmatrix}$ or awrt 2.92 B1 (c) $P(\overline{S} < 3) = P \begin{pmatrix} Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}} \end{pmatrix}$ $\{= P(Z < -1.85164)\}$ M1 $\{= 1 - 0.9678\} = 0.0322$ 0.032 to 0.0322 A1 (d) $2^{\text{nd}} B1 \text{ allow awrt } 2.92$ (e) B1ft for $\overline{S} \sim N \begin{pmatrix} "3.5", \frac{(\frac{35}{12})"}{40} \end{pmatrix}$ seen or implied. Follow through their $E(S)$ and their $Var(S)$ NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729			
(a) $E(S) = 3.5$, $Var(S) = \frac{35}{12}$ $Var(S) = \frac{35}{12}$ or awrt 2.92 B1 (b) $So, \overline{S} - N \begin{pmatrix} "3.5", \frac{(35)}{40} \end{pmatrix}$ or $\overline{S} - N \begin{pmatrix} "3.5", \frac{7}{96} \end{pmatrix}$ B1ft $P(\overline{S} < 3) = P \begin{pmatrix} Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}} \end{pmatrix} \{ = P(Z < -1.85164) \}$ $\{ = 1 - 0.9678 \} = 0.0322$ 0.032 to 0.0322 A1 (Total Notes (a) $2^{nd} B1$ allow awrt 2.92 (b) B1ft for $\overline{S} - N \begin{pmatrix} "3.5", \frac{(35)}{12} \end{pmatrix}$ seen or implied. Follow through their E(S) and their Var(S) $NB \frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729	E(S) = 3.5 R1	Let A – Score on a die	R1
(b) $So, \overline{S} \sim N \left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40} \right)$ or $\overline{S} \sim N \left("3.5", \frac{7}{96} \right)$ $P(\overline{S} < 3) = P \left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}} \right) \left\{ = P(Z < -1.85164) \right\}$ $\left\{ = 1 - 0.9678 \right\} = 0.0322$ (a) $2^{\text{nd}} B1$ allow awrt 2.92 (b) $B1 \text{ft}$ for $\overline{S} \sim N \left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) $NB \frac{7}{96} = 0.07291\dot{6} \text{ accept awrt } 0.0729$		$E(S) = 3.5$, $Var(S) = \frac{35}{12}$	
$P(\overline{S} < 3) = P\left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}}\right) \{= P(Z < -1.85164)\}$ $\{= 1 - 0.9678 \} = 0.0322$ $(a) $	12	12	
			[2] B1ft
(a) 2^{nd} B1 allow awrt 2.92 (b) B1ft for $\overline{S} \sim N \left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) $NB \frac{7}{96} = 0.07291\dot{6} \text{ accept awrt } 0.0729$	$\{(Z < -1.85164)\}$ M1	$P(\overline{S} < 3) = P \left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}} \right) = P$	M1
(a) 2^{nd} B1 allow awrt 2.92 (b) B1ft for $\overline{S} \sim N \left("3.5", \frac{\left(\frac{35}{12} \right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729	0.032 to 0.0322 A1	$\{=1-0.9678\} = 0.0322$	A1
(a) 2^{nd} B1 allow awrt 2.92 (b) B1ft for $\overline{S} \sim N \left("3.5", \frac{\left(\frac{35}{12} \right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729		,	[3]
(a) 2^{nd} B1 allow awrt 2.92 (b) B1ft for $\overline{S} \sim N \left("3.5", \frac{\left(\frac{35}{12} \right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) $NB \frac{7}{96} = 0.07291\dot{6} \text{ accept awrt } 0.0729$			(Total 5)
(b) B1ft for $\overline{S} \sim N \left("3.5", \frac{\left(\frac{35}{12} \right)"}{40} \right)$ seen or implied. Follow through their E(S) and their Var(S) $NB \frac{7}{96} = 0.07291\dot{6} \text{ accept awrt } 0.0729$	Notes	2 nd R1 allow awrt 2 92	
ALT ΣS B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ where 140 is $40 \times$ their E(S) and variance is $40 \times$ their Var(S) M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or $P\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right)$ {= $P(Z < -1.8979)$ } A1 for $0.032 \sim 0.0322$ or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).	th 3, their mean (>3) and $\sqrt{\frac{\text{their Var}(S)}{40}}$. Must lead to P(Z < -vertex) there 140 is 40×their E(S) and variance is 40×their Var(S) $\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right) \{= P(Z < -1.8979)\}$	NB $\frac{7}{96} = 0.07291\dot{6}$ accept aways M1 for an attempt to standardise with A1 for $0.032 \sim 0.0322$ B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ w M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or P	

Question Number	Scheme	Marks
8. (a)	$\left\{ \overline{x} = \frac{29.74 + 31.86}{2} \right\} \Rightarrow \overline{x} = 30.8$ This can be implied. See note.	B1
	"1.96" $\left(\frac{\sigma}{\sqrt{n}}\right)$ = 31.86 - 30.8 or $2("1.96")\left(\frac{\sigma}{\sqrt{n}}\right)$ = 31.86 - 29.74	M1
	$SE_{\bar{x}} = \frac{31.86 - 30.8}{1.96} = 0.540816 = 0.54 (2dp)$ awrt 0.54	A1
(b)	A 90% CI for μ is $\bar{x} \pm 1.6449 \left(\frac{\sigma}{\sqrt{n}} \right)$	[3] B1
	$= 30.8 \pm 1.6449(0.54)$ (their \overline{x}) \pm (their z)(their $SE_{\overline{x}}$ from (a)) = (29.91, 31.69) (awrt 29.9 , awrt 31.7)	M1 A1
(c)	Let $X =$ number of confidence intervals containing μ	[3]
	or $Y =$ number of confidence intervals not containing μ	
	So $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	M1
	$P(X \ge 3) \text{ or } P(Y \le 1) = {}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$	A1 oe
	= 0.2916 + 0.6561 = 0.9477 0.9477 or 0.948	A1
		[3] (Total 9)
	Notes	(10441)
(a)	B1: $\bar{x} = 30.8 \text{ may be implied by } 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) = \left[31.86 - 30.8\right] = 1.06 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31$.86 – 29.74
	M1: A correct equation for either a width or a half-width involving a z-value $1.5 \le z \le 2$	
	Eg: "their $z''\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - "30.8"$ ft their \overline{x} or $2("their z")\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29$	9.74
	or "their z " ($SE_{\bar{x}}$) = 31.86 - "30.8" or 2("their z ")($SE_{\bar{x}}$) = 31.86 - 29.74 are fine	for M1.
	A1: 0.54 or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0	
	Condone $\bar{x} \pm 1.96\sigma =$ for B1 and M1 but A0 even if they say " $\sigma =$ standard error = 0. Otherwise answer only of 0.54 scores 3 out of 3	.54"
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \le z \le 1.7$	Ξ)
(c)	M1: States or applies either $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	
	Condone M1 for $0.9^4 + 0.9^3 \times 0.1$ (o.e.)	
	1 st A1: ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ or $(0.9)^{4} + {}^{4}C_{1}(0.1)(0.9)^{3}$ oe	
	2 nd A1: 0.9477 or 0.948	

G. B. Attwood 30/05/15

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom