

Mark Scheme (Unused)

January 2022

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P71859A All the material in this publication is copyright © Pearson Education Ltd 2022

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks
1 (a)	Number	B1	
	Use a rat	B1	
	Select ev	very 20 th person on the list	B1
			(3)
(b)(i)	They on	ly need to generate one random number	B1
	2		(1)
(b)(ii)		random as the list is ordered alphabetically or not all combinations of g units are possible	M1
		kely siblings would be selected	A1
	U		(2)
(c)	Number	of Y9 students = $\frac{200}{1200} \times 60$ [= 10]	M1
	The strat	tified sample gives a better proportion or is more representative oe	A1
			(2)
		Notes	Total 8
1 (a)	B1	numbering the students (Allow $0 - 1199$).	
	B1	using a random starting point. Must be between 1 and 20 (Allow $0 - 19$).	
	B1	selecting every 20 th person.	
(b)(i)	B1	a suitable comment.	
(b)(ii)	M1	a suitable comment.	
	A1	a suitable example.	
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$	
	A1	a correct explanation.	

Question Number		Scheme	Marks				
2 (a)	Use of $\bar{x} \pm z \times \frac{1.9}{\sqrt{10}}$; $z = 1.96$						
		, 54.897) awrt 52.5 and 54.9	A1 A1				
			(4)				
(b)	Use of 1.	$.5 > 2 \times z \times \frac{1.9}{\sqrt{n}}$ oe ; $z = 2.5758$ (or better)	M1;B1				
	$1.5 > \frac{9.7}{2}$	$\frac{18804}{\sqrt{n}}$	dM1				
		8 So $n = 43$	A1				
			(4)				
		Notes	Total 8				
2 (a)	M1	for use of correct expression with 1.9, 10 and $1 < z < 3$					
	B1	for $z = 1.96$					
	A1	for awrt 52.5					
	A1	for awrt 54.9					
(b)	M1	use of $z \times \frac{1.9}{\sqrt{n}}$ in a correct inequality with 0.75 or 1.5 and $2 < z < 3$ (allow written	n as an				
	D1	equation)					
	B1	for $z = 2.5758$ (or better)					
	dM1	dependent on 1 st M1, for solving a correct inequality for the width of the 99% CI (all equation rather than an inequality)	ow an				
	A1	cao					

Question Number				Scheme	;								Marks
	Driver	Α	В	С	D	E	F	G	Н	Ι	J		
3 (a)	Rank FO		5	3	2	6	4	8	9	10	7		M1
	FP	1	2	3	4	5	6	7	8	9	10		
	$\sum d^2 = 0 + 9 + 0 + 4 + 1 + 4 + 1 + 1 + 1 + 9 [=30]$											M1	
	$r_s = 1 - \frac{\epsilon}{10}$	5(30) 0(99)											dM1
	= 0.818	81818								6	awrt 0.8	318	A1
													(4)
(b)	$H_0: \rho = 0$	$H_1: \rho > 0$											B1
	Critical V	falue $r_s = 0$.	7455 0	or CR:	<i>r</i> _s ().7455							B1
	Reject H ₀ or significant or lies in the critical region										M1		
	There is sufficient evidence of a positive correlation between fastest qualifying lap time and finishing position for these Formula One racing drivers										A1		
											(4)		
					N	otes							Total 8
3 (a)	M1	M1 attempt to rank fastest qualifying lap (at least four correct).											
	M1	finding the difference between each of the ranks and evaluating $\sum d^2$											
	dM1	dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$											
	A1	$\frac{9}{11}$ or awrt	0.818										
(b)	B1	both hypoth	eses coi	rect. M	ust be in	n terms	of ρ . N	/lust be	attached	1 to H_0 a	and H ₁		
	B1	critical valu	e of 0.7	455									
	M1 A correct statement comparing their CV with their r_s - no context needed but do no								o not	t allow			
		contradictin	<u> </u>										
	A1	correct cond	lusion v	which is	rejectir	ng H ₀ , w	hich m	ust men	tion lap	time a	nd finis	hing	position.

uestion umber			Scheme				Marks			
4	H_0 : There is no association between type of property and the time taken to sell it H_1 : There is an association between type of property and the time taken to sell it									
	Expected		Bungalow	Flat	House	Total				
	Within 3 months		10.496	31.488	40.016	(82)	M1			
	More than 3 months		5.504	16.512	20.984	(43)	A1			
	Total		(16)	(48)	(61)	(125)				
	0	bserved	Expected	(0 -	$\frac{(O-E)^2}{E} \qquad \qquad \frac{O^2}{E}$					
		7	10.496	1.164		4.6684				
		29	31.488	0.196		26.7085	13 6 4			
		46	40.016	0.894		52.8788	dM1			
		9	5.504	2.220		14.7165	A1			
		19	16.512	0.374		21.8628				
		15	20.984	1.700		10.7224				
		•	Tot			131.557				
	$\left[X^2=\right]$	$\sum \frac{(O-E)^2}{E} \text{or} $	$\sum \frac{O^2}{E} - 125$		i		dM1			
	= 6.557 awrt 6.56									
	v = (2 - 1)(3 - 1) = 2									
	$c_2^2(0.05) = 5.991 \implies CR: X^2 \dots 5.991$									
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that there is an association between type of property and the time taken to sell it.									
		T		Notes			Total 1			
4	B1	Both hypotheses correct. Must mention "type of property" and "time taken" at least once. (may be written in terms of independence)								
	M1	Some attempt at $\frac{(\text{Row Total})(\text{Column Total})}{(\text{Grand Total})}$ Can be implied by at least one correct E_i to 1dp								
	A1	All expected frequencies correct								
	dM1	Dependent on 1 st M1 for at least 2 correct terms for $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct expressions								
			ccept 2 sf accurac							
	A1	At least 3 correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to 2dp or better. Allow truncated answers.								
	dM1	Dependent on 2 nd M1 For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$								
	A1	awrt 6.56								
	B1	v = 2 This mar	k can be implied	by a correct criti	cal value of 5.99	91				
	B1	5.991								
	A1 Dependent on the 3 rd M1 and 3 rd B1. A correct contextualised conclusion which is rej. A1 Must mention type and time. Contradictory statements score A0. e.g. "significant, distribution."									

Question			
Number		Scheme	Marks
5 (a)(i)	$\left[\overline{x} = \frac{36}{50} \right]$	$\frac{10}{0} \Rightarrow \boxed{\overline{x} = 72.2} \qquad s_x^2 = \frac{260955.6 - 50(72.2)^2}{50 - 1} = 6.4$	B1; M1 A1
5(a)(ii)	$\left[\overline{y} = \frac{25}{5} \right]$	$\frac{85}{0} \Rightarrow \boxed{\overline{y}} = 51.7 \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$	B1 A1
			(5)
(b)	$\mathbf{H}_0:\boldsymbol{\mu}_x -$	$\mu_y = 20$	B1
(b)	$H_1: \mu_x -$	$\mu_y > 20$	DI
	'72.2	2'-'51.7'-20	
	z =	$\overline{64! \cdot 23!}$	M1 M1
	$\sqrt{-1}$	$\frac{2'-51.7'-20}{\frac{6.4'}{50}+\frac{2.3'}{50}}$	
	· · ·		A 1
	=1.193		Al
		ed c.v. $Z = 1.6449$ or CR: $Z \dots 1.6449$	B1
		R/Not significant/Do not reject H ₀	M1
	No signi	ficant evidence to support Tammy's belief	A1
			(7)
(c)		e sample is large the CLT applies.	M1
	No need	to assume (the weights) are normally distributed.	A1
			(2)
(d)	Assumed	d that $s^2 = \sigma^2$	B1
		Notor	(1) Total 15
5 (a)(i)	B1	Notes $\overline{x} = 72.2$	10tal 15
J(a)(1)	DI		.2
	MI	A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$)
	M1		
		(May be seen in (i) or (ii))	
- () (··)	A1	6.4	
5(a)(ii)	B1	$\overline{y} = 51.7$	
(1.)	A1 D1	2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	
(b)	B1 M1		
	M1	For correct standard error. Follow through their values from (a) $a - b - 20$	
	M1	An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct. Allow ±	
	M1	$\int \frac{c}{1-c} + \frac{d}{1-c}$	
	A1	awrt 1.20 Allow 1.2 if no incorrect working shown	
	B 1	1.6449 or better (seen)A correct statement – need not be contextual but do not allow contradicting non c	ntovtuol
	M1	comments.	πσλιμάι
		A correct contextual statement. Allow the difference in mean weights is not g	eater than
	A1	20 kg	catter than
	M1	A suitable comment that mentions large and CLT	
(C)	TATT		
(c)	A1	A correct answer, context not required.	

Question Number			Sche				Marks			
6 (a)	$\frac{0 \times 1 + 1 \times 10 + 2 \times 23 + 3 \times 15 + 4 \times 19 + 5 \times 9 + 6 \times 3}{= 3 *}$									
0 (11)	80									
	$a^{-3} \times 2^{5}$									
(b)	$r = e^{-3} \times$	80 = 3.9	$83 s = \frac{e^{-3} \times 3^5}{5!} \times$	80 ;= 8.066			M1 ; A1			
				.923+13.443+ <i>s</i>); = 6.713		M1 ; A1			
							(4)			
(a)	H_0 : Pois	sson (dis	stribution) is a re	asonable/suitable	e/ sensible (mod	el)	B1			
(c)	H ₁ : Poi	sson (dis	stribution) is not	a /reasonable/sui	itable/ sensible (i	model).	DI			
	Numb	ber of	Combined	Combined	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$				
	ema	ails	Observed	Expected	E	\overline{E}				
	≤	1	11	15.932	1.5267	7.5947				
	2		23	17.923	1.4381	29.5151				
	3		15	17.923	0.4767	12.5537	M1			
	4	-	19	13.443	2.2971	26.8541				
	5		9	8.065	0.1083	10.0433				
	≥	6	3	6.714	2.0544	1.3404				
	Totals 7.901 87.901									
	$X^{2} = \sum \frac{(O-E)^{2}}{E}$ or $\sum \frac{O^{2}}{E} - 80$									
	= 7.901 awrt 7.90									
	v = 6 - 1 - 1 = 4									
	$c_4^2(0.10) = 7.779 \implies CR: X^2 \dots 7.779$									
	[since $X^2 = 7.90$ does lie in CR, then there is sufficient evidence to reject H ₀]									
	Sufficient evidence to say that Poisson is not a reasonable model									
	N - 4									
(z)	D1	F ama a		Notes	- i- 2		Total 12			
6 (a)	B1			hown that the mea						
(b)	M1	Use of	Use of $\frac{e^{-\lambda} \times \lambda^r}{r!} \times 80$ or May be implied by a correct answer for either <i>r</i> or <i>s</i>							
	A1	r = 3.983 and $s = 8.066$ (allow $r = 3.984$ and $s = 8.064$ as these come from tables								
	M1	A correct method that ensures that expected totals = 80								
	A1	t = 6.7	713 (allow t = 6.7)	714 if tables used	.)					
(c)	B 1			Must mention Poi						
	M1	Combining 0 emails and 1 email. Must have both observed and expected frequencies								
	M1	An attempt at the test statistic, at least 2 correct expressions/values (to awrt 2dp)								
	A1 B1									
	B1									
		B1 7.779								
	A1 A correct conclusion based on their X^2 value and their χ^2 critical value									

Question Number		Scheme	Marks					
7 (a)	Let X rep	present $B_1 + B_2 - C_1$						
	$X \square$ N(0.268, 0.015633) awrt 0.0156							
	P(X < 0)	$P = P \left(Z < \frac{0 - 0.268}{\sqrt{0.015633}} \left(= -2.14 \right) \right)$	M1					
		(=1-0.9838) = 0.0162	A1					
			(4)					
(b)	Let Y rep	present $2.5B_1 + 3C_1 + 3C_2$						
	$Y \square N(6)$.918,0.071478) awrt 6.92, 0.0715	M1 A1					
		$= P\left(Z > \frac{7 - "6.918"}{\sqrt{"0.071478"}} (= 0.31)\right)$	M1					
		(=1-0.6217) = 0.3783 (Calculator gives 0.3795) $0.378-0.380$	A1					
			(4)					
(c)	Mean = 2.94w							
	Standard	deviation = $0.084\sqrt{5} w$ (= 0.188w)	B1					
			(2)					
(d)	$\frac{6-2.94}{0.084\sqrt{5}}$	$\frac{w}{w}$, -1.2816	M1;B1					
	-1.2816	$\times 0.084\sqrt{5} w + 2.94w \dots 6$	dM1					
		2 So $w = 2.23$	A1					
	<i>w</i> 2.2.	2 50 % - 2.25	(4)					
		Notes	Total 14					
7 (a)	M1	for setting up normal distribution with mean 0.268						
. ,	A1	for a correct expression for variance (= 0.015633) or for standard deviation (= 0.125).)					
	M1	for standardising with 0, 0.268 and their standard deviation	,					
	A1	awrt 0.0162 (Allow awrt 0.0160 as this comes from a calculator)						
(b)	M1							
	A1	for a correct expression for variance (= 0.071478) or for standard deviation (= 0.267 .)					
	M1	for standardising with 7, 0.071478 and their standard deviation						
	A1	for answer between 0.378 – 3.80						
(c)	B 1	for 2.94w						
	B1	for $0.084\sqrt{5}w$ or awrt $0.188w$						
(d)	M1	for standardising using their mean and their standard deviation = z where $1 < z < 1$.	5					
	B1	for -1.28						
	dM1	dependent on M1, for solving their inequality						
1	ulvi i							

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom