

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

January 2021 Publications Code WST03_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme				
1. (a)	[In QP: 33, 15, 23] 29, 34, 39, 06, 31, 13, 42	M1A1			
		(2)			
(b)	This will give 4 girls with numbers 15, 23, 06, 13	B1			
	This will give 6 boys with numbers 33, 29, 34, 39, 31, 42	B1			
		(2)			
(c)	Since the highest number is 42	MI			
	therefore may miss <u>older players</u>	Al			
		(2)			
		[6 marks]			
	Notes				
(a)	M1 for 7 numbers (at least 4 correct in any order)				
	(Condone repeats but only count once towards the "4") e.g. <u>29</u> , 33, <u>34</u> , <u>39</u> ,	15, 29, <u>31</u>			
	The 33 and 15 are repeats of those in QP and 29 is a repeat but all will cou	int for the "7"			
	This will score M1 as there are 4 of the correct numbers listed: 29, 34, 39 and 31				
	A1 for all 7 correct with no repeats				
(b)	1^{st} B1 for showing the 4 girls in sample (No ft for incorrect random numbers)				
(0)	2^{nd} B1 for showing the 6 boys in the sample (No ft for incorrect random numbers)	ra)			
	2 BT for showing the o boys in the sample (No it for incorrect random numbe	15)			
(c)	M1 for mention of highest number of 42 (or ft their highest number as long as	< 60)			
. ,	A1 for stating that this means older players may be missing from the sample				
	This can be awarded if their highest number is stated for M1 and is < 42				

Ρ	M	Т

Question Number	Scheme								Marks				
	Student	A	В	С	D	Ε	F	G	H	Ι	J	K	
2. (a)	Objects rank	9	6	8	2	1	10	7	3	5	4	11	M1
	Maths rank	11	4	5	1	2	9	3	7	8	6	10	M1
	$\sum d^2 = 4 + 4 + 9 + 1 + 1 + 16 + 16 + 9 + 4 + 1 = 66$									M1			
	$r_s = 1 - \frac{6 \times 66^n}{11(11^2 - 1)}$;	= <u>0.7</u>									dM1; A1
(b)	$H_0: \rho = 0$ $H_1: \rho > 0$	> 0											(3) B1
	Critical value ($n = 11$ (Significant result so	. 5%) ther	one-t	ail) is	6 0.53	364 supp	ort th	e tea	wher's	belie	of		B1
	(Significant result so) there is evidence to support the teacher's belief <u>or</u> there is evidence of a positive correlation between short term memory and mathematical ability (o.e.) <u>or</u> evidence that students with strong maths ability also have good short term									B1			
	memory (o.e.)												(3)
(c)	Data shows positive	corre	latior	n but o	does 1	not ne	ecessa	rily i	mply	that e	enhan	ced	B1
	short term memory <u>c</u>	auses	s incr	ease 1	n mai	thema	atical	abilit	у.				(1)
											[0 morks]		
					Not	es							
(a)	1 st M1 for attempt to 2 nd M1 for both rows 3 rd M1 for an attempt	o ran] s ranl pt at	k one ked w $\sum d^2$	row /ith at ft the	with a least eir va	at lea 5 co: lues a	st 5 co rrect i ind at	orrect in eac least	t (cou h rov 5 coi	ld be v (one rrect	reven e or b	rsed) oth rev	versed)
	4 th dM1 (dep on at le	east o	ne M	[1) fc	or use	of th	eir ∑	d^2 i	n a co	orrect	form	ula	
	A1 for 0.7 or exact equivalent												
(b)	1 st B1 for both hypotheses in terms of ρ or ρ_s [If $r_s < 0$ in (a) allow H ₁ : $\rho < 0$] 2 nd B1 for critical value of 0.5364 (sign compatible with r_s) [If $r_s < 0$ in (a) need -0.5364] Allow 0.6182 if 1 st B0 for H ₁ : $\rho \neq 0$								0] ed -0.5364]				
	3 rd B1 for correct conclusion in context. Penalise contradictory comments e.g. "not significant so supports teacher's belief" [No ft]												
(c)	B1 for a comment that states that correlation does <u>not</u> imply <u>causation</u> Need to see "cause" or "causation" clearly mentioned.												

Question Number	Scheme					
3. (a)	All expected frequencies are $(88 \div 4) = \underline{22}$	B1				
	Degrees of freedom = 3, so critical value $\chi_3^2(5\%) = 7.815$	B1, B1ft				
	(Not significant so) insufficient evidence to suggest not uniformly distributed	B1				
		(4)				
(b)	e.g. H ₀ : School is independent of club chosen	B1				
	H]. Club chosen depends on which school a student is from	(1)				
	28×17	(1)				
(c)	$\frac{20000}{88} = 5.409$ awrt <u>5.41</u>	BI				
		(1)				
(d)	Expected frequency for Music and School $C = 4.77 < 5$ (Allow $\frac{105}{22}$ for 4.77)	B1				
	So combine Music column with another column giving 3x3 table so 4 df	B1 (2)				
(e)	Critical value $\chi_{1}^{2}(5\%) = 9.488$	B1 (2)				
(-)	[Not significant so] insufficient evidence of an association	R1				
	between school and choice of club	DI				
		(2)				
	Notes					
	Ignore values of any test statistics calculated in (a) or (e)					
(a)	1^{st} B1for 22 2^{nd} B1for degrees of freedom = 3 (can be implied by sight of 7.815 as cv) 3^{rd} B1ftfor 7.815 (or better - cal: 7.814727910 or correct 5% cv for their d. 4^{th} B1for comment suggesting uniform distribution is a suitable model.Must follow from comparing 6.09 with their cv.Do not allow contradictory statements e.g. "significant" so uniform distribution	f.) t' is suitable				
(b)	B1 for both hypotheses with some context ("club" and "school" mentioned at l Use of "independence" or "association"	east once)				
(c)	B1 for a correct expression or awrt 5.41 (allow $\frac{119}{22}$)					
(d)	1^{st} B1 for identifying that Music & School C has E_i that is < 5 (a value to 2 sf should be seen, may be in (c), but must state this $E_i < 5$ as well) 2^{nd} B1 for pooling music with another column leading to 3x3 table and 4 degrees of freedom Must clearly state the pooling and evidence for 4 df e.g. allow $(3-1)\times(4-1-1)$					
	[NB pooling with Art gives 4.3987, with Sports 4.3247, with Compute	ers 7.2879]				
(e)	1^{st} B1 for 9.488 (or awrt 9.488) 2^{nd} B1 for a correct, not significant, conclusion mentioning <u>school</u> and <u>clubs</u>					

Question Number	Scheme	Marks
4. (a)	Use of $\overline{x} \pm z \times \frac{18}{\sqrt{25}}$; $z = 2.3263$ (or better)	M1;B1
	= (44.0253, 60.7746) awrt (44.0, 60.8)	A1, A1
(b)	$\mathbf{H}_{0}:\boldsymbol{\mu}_{A}=\boldsymbol{\mu}_{B} \mathbf{H}_{1}:\boldsymbol{\mu}_{B}>\boldsymbol{\mu}_{A}$	(4) B1
	$z = (\pm) \frac{57.8 - 52.4}{18\sqrt{\frac{1}{25} + \frac{1}{30}}}$	M1dM1
	$= (\pm) 1.1078 \text{ awrt } (\pm) \underline{1.11}$ 5% one-tail critical value is 1.6449 (or <i>p</i> -value = 0.13396 i.e. awrt 0.134) (not sig') so insufficient evidence (in these data) to support newspaper's claim	A1 B1 A1
(c)	Require $\frac{\overline{x} - \mu}{\frac{18}{\sqrt{n}}} > z$ where $z = -1.6449$ (o.e.)	(0) M1
	$\mu < 52.4 + 1.64(49) \times \frac{18}{5}$ or $\mu < 57.8 + 1.64(49) \times \frac{18}{\sqrt{30}}$	A1
	i.e. $\mu < 58.3216$ and $\mu < 63.2056$	M1
	So $\mu = 58.3$	A1 (4)
		[14 marks]
(a)	$\frac{\text{Notes}}{12.25 \text{ and } 1.45 \text{ and } 2.45 \text{ and } 1.45 \text{ and } 1$	1_)
(a)	B1 for $z = 2.3263$ or better (calc: 2.32634787) 1 st A1 for awrt 44.0 (ans only of 44.02or awrt 44.03 scores M1B1 implied) 2 nd A1 for awrt 60.8 (ans only of 60.77 or awrt 60.77 scores M1B1 implied)	IK)
(b)	1 st B1 for both hypotheses in terms of μ s (If using μ_1 etc they must define which 1 st M1 for a correct denominator (18 needn't be outside square root) [4.87(44 2 nd dM1 for a correct expression for test statistic 1 st A1 for awrt (+) 1.11	n is which))]
	2 nd B1 for critical value of 1.6449 or better (If B0 in (a) for 2.33 allow 1.64 or 1 [Allow <i>p</i> -value of awrt 0.134 and condone awrt 0.866 if compared with 0	.645 here)).95]
	2^{nd} A1 Correct contextual conclusion, ft comparing their "1.11" with 1.64 (or the must be not significant and mention "claim" or "score in town <i>A</i> " and "score in to	eir cv) but own <i>B</i> "
(c)	1 st M1 for a correct starting <u>inequality</u> with any z such that $ z > 1$ (Allow \ge) 1 st A1 for either correct <u>inequality</u> for μ , allow $z = 1.64$ or better 2 nd M1 for both cases of $\overline{x} + z \frac{18}{\sqrt{n}}$ (z > 1) can allow "=" or inequality, may be in C	CI
	2 nd A1 (dep on both Ms) for sight of both awrt 58.3 and awrt 63.2 and selecting	awrt 58.3

Question Number	Scheme							
5. (a)	H_0 : N(6,0.75 ²) is a suitable model for the length of fallen pine cones							
	H_1 : N(6,0.75 ²) is NOT a suitable model for the lengths of the pine cones	BI						
	e.g. $E_i: 5 \le x < 5.5 = 80 \times P(5 \le X < 5.5) = 80 \times P(-\frac{4}{3} \le Z < -\frac{2}{3}) [= 12.77 \sim 12.90]$	M1 A1						
	<u>or</u> $E_i: 6 \le x < 6.5 = 80 \times P(0 \le Z < \frac{2}{3}) [= 19.80 - 19.89]$							
	$E_i: 5.5 \le x < 6 = 19.80 \sim 19.89$ or $x \ge 6.5 = 40 - "19.80" = 20.11 \sim 20.20$	M1						
	$x < 5 \qquad 5 \le x < 5.5 \qquad 5.5 \le x < 6 \qquad 6 \le x < 6.5 \qquad x \ge 6.5$							
	E_i 7.30~7.43 12.77~12.90 19.80~19.89 19.80~19.89 20.11~20.20	A1						
	$\frac{(O-E)^2}{E} 0.23 \sim 0.28 0.093 \sim 0.12 0.84 \sim 0.90 1.87 \sim 1.95 5.08 \sim 5.16$							
	$\sum \frac{(O_i - E_i)^2}{E_i} \text{ or } \sum \frac{O_i^2}{E_i} - 80 = 8.308 ; \text{ answer in } [8.15 \sim 8.4]$	dM1; A1						
	$\nu = 5 - 1 = 4 \implies; \chi_4^2(10\%) = 7.779$	B1; B1ft						
	(significant result so) the data do not support Chrystal's belief	A1ft						
		(10)						
(b)	$\hat{\mu} = \frac{464}{80} = \underline{5.8} \text{ (cm)}; s^2 = \frac{2722.59 - 80 \times "5.8^2 "}{79}$	B1; M1						
	$s^2 = 0.39734$ awrt <u>0.397</u> (cm ²)	A1 (2)						
(c)	$y = 5 - 3 = 2$: so $y^{2}(10\%) = 4.605$	(3) B1· B1ft						
(0)	(Not sig') so a normal distribution is a plausible model for length of pine cones	B1, D11 R1ft						
		(3)						
(d)	$P(X > 7 \mid \mu = 5.8 \text{ and } s = \sigma = 0.63035) = P\left(Z > \frac{7 - 5.8}{\sqrt{0.397}}\right) = P(Z > 1.90)$	M1						
	$= 0.028 \sim 0.029$							
	Notos							
(a)	1^{st} B1 for both hypotheses. Must include the model and mention "length(s)" and	"cones"						
	1^{st} M1 for correct use of normal to find E_i for one cell							
	1 st A1 for a middle value e.g. awrt 12.77~12.90 inclusive (12.77 is from tables, 12.90 calc)							
	2 nd M1 for use of symmetry to get E_i for $5.5 \le x < 6$ (same as $6 \le x < 6.5$) or $x \ge 6$.	5 (40 –)						
	2^{rd} A1 for a correct set of expected frequencies (all awrt in given ranges) 3^{rd} dM1 (den on 1^{st} M1) for a correct attempt to find test statistic at least one correct term							
	3^{rd} A1 for answer in the range 8.15-8.4 (inclusive)							
	2^{nd} B1 for degrees of freedom = 4							
	3 th B1ft for a correct 10% critical value using their degrees of freedom 4 th A1ft day on M2 and any arrest 7.78 for any factor based based by the second based by	- (1. 1)						
	4 ^{er} A1ft dep on M3 and cv = awrt 7.78 for contextual conclusion: length, cones, N (μ σ not needed) or Chrystal's belief							
(b)	B1 for 5.8							
	M1 for a correct expression (ft their mean)							
	A1 for awrt 0.397 (Condone $\frac{3139}{7900}$)							
(c)	$1^{\text{st}} B1$ for degrees of freedom = 2							
	2^{nd} B1ft for a correct cv (different from their part (a)) ft their df							
	3 rd B1ft for a correct conclusion in context ft cv ("length" and "cones") Ignore an	by μ or σ						
(h)	M1 for standardising with 7 their 5.8 (\neq 6) and their s.d. from (b) Japore any x	80						
(u)	A1 for a correct proportion of 0.028 or 0.029. (ISW if correct ans followed by \times	80)						

Question Number	Scheme					
6. (a)	Let $D = Y - R$ then $E(D) = -3$; $Var(D) = 0.8^2 + 1.5^2$ or 1.7^2 or 2.89	B1, M1				
	$P(D > 0) = P\left(Z > \frac{03}{1.7}\right) \text{ or } P(Z > 1.7647)$	M1				
	= 0.03880655 or 1 - 0.9608 = 0.0392 awrt 0.039	A1 (4)				
(b)	$(R_1 + R_2 + R_3) \sim N\left(45, \sqrt{3 \times 1.5^2}^2\right)$; $4Y \sim N\left(48, \sqrt{4^2 \times 0.8^2}^2\right)$	M1A1A1				
	$L = 4Y - \left(R_1 + R_2 + R_3\right) \implies L \sim N\left(3, \sqrt{16.99}^2\right)$	M1A1				
	$P(L>0) = P\left(Z > \frac{0-3}{\sqrt{16.99}}\right) \text{ or } P(Z>0-0.7278) \text{ [use } 0-0.73 \text{ in tables]}$	dM1				
	= awrt <u>0.767</u>	A1 (7)				
(c)	E(X) = 780 gives $15a + 12b = 780$ [Var(X) =] $1.5^2 \times a^2 + 0.8^2 \times b^2$	M1A1 M1				
	Sub for <i>a</i> : Var(X) = $2.25(52 - 0.8b)^2 + 0.64 \times b^2$ or $2.08b^2 - 187.2b + 6084$	M1				
	$\frac{\mathrm{d}}{\mathrm{d}b}[\operatorname{Var}(X)] = 0 \implies 4.16b - 187.2 = 0$	M1				
	$\underline{b=45}$	A1				
	So $a = 52 - 0.8 \times 45 = 52 - 36$ $\underline{a = 16}$	A1 (7)				
	Natar	[18 marks]				
(a)	B1 for $E(D) = -3$ (or +3 if using $R - Y$) and $1^{st} M1$ for $Var(D) = 0$. $2^{nd} M1$ for attempt at $P(D > 0)$ must standardise with their -3 and their 1.7 and A1 for awrt 0.039	$8^2 + 1.5^2$ o.e. d inequality				
(b)	1 st M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or 4Y					
	1 st A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2 nd A1 for 4Y ~ N(48, $\sqrt{48}, \sqrt{6.75}^2)$	10.24^{2}				
	2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc)	2				
	Must have L with mean of ± 3 and $\sigma_L^2 = "6.75" + "10.24" = (4.1218)$	2				
	3 rd dM1 (dep on 2 nd M1) for attempting a prob (\rightarrow ans > 0.5) using $\mu = +3$ at	rks nd their σ				
	4 th A1 for awrt 0.767 (Calc: 0.7666384 or tables 0.7673)					
(c)	1 st M1 for an attempt to use $E(X) = 780$ must see a linear equation in <i>a</i> and <i>b</i> u 1 st A1 for $15a + 12b = 780$ o.e. e.g. $5a + 4b = 260$ or $a + 0.8b = 52$ etc 2 nd M1 for an attempt to find an expression for Var(X) (condone <i>a</i> and <i>b</i> wrong 3 rd M1 for forming a quadratic expression for Var(X) in terms of <i>a</i> or <i>b</i> only (M0 for = 4 th M1 suitable method for finding min (e.g. differentiation, or completing square 1 ² ($a^2 - 22 = -202$) for $a + 12b = -12b$	sing 780 g way around) = $k, k \neq 0$ re or calc)				
	e.g. $\frac{15}{4}(a^2 - 32a + 832)[3^{10} \text{ M1}]$ then $k \lfloor (a - 16) + m \rfloor$ would score 4^{11} M	.1				
	2^{rd} A1 for $b = 45$ or $a = 16$ Correct answers should be accompanied 3^{rd} A1 for both $b = 45$ and $a = 16$ for 1^{st} 4 marks	by evidence				