| S2 Specimen (IAL) MA                                                                         |                                                                                                        |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| I. Explain what you understand by PhysicsAndM                                                | lathsTutor.com                                                                                         |
| Explain what you understand by                                                               | 2. Bhim and Joe play each other at badminton and for each game, independently of all others,           |
| (a) a population,                                                                            | the probability that Bhim loses is 0.2                                                                 |
| (1)                                                                                          | Find the probability that, in 9 games, Bhim loses                                                      |
| (b) a statistic.                                                                             | , and games, brinin loses                                                                              |
| (1)                                                                                          | (a) exactly 3 of the games,                                                                            |
|                                                                                              | (3)                                                                                                    |
| A researcher took a sample of 100 voters from a certain town and asked them who they         | (b) fewer than half of the games.                                                                      |
| would vote for in an election. The proportion who said they would vote for Dr Smith was 35%. | (2)                                                                                                    |
|                                                                                              |                                                                                                        |
| (c) State the population and the statistic in this case.                                     | Bhim attends coaching sessions for 2 months. After completing the coaching, the                        |
| (2)                                                                                          | probability that he loses each game, independently of all others, is 0.05                              |
| (d) Explain what you understand by the complice distribution Cd.                             | Bhim and Joe agree to play a further 60 games.                                                         |
| (d) Explain what you understand by the sampling distribution of this statistic.              |                                                                                                        |
|                                                                                              | (c) Calculate the mean and variance for the number of these 60 games that Bhim loses.                  |
| e) Population - all possible items from which                                                | (2)                                                                                                    |
| a sample could be chosen                                                                     | (d) Using a suitable approximation calculate the probability that Bhim loses more than 4               |
| Statistic - A function from a random sample                                                  | games.                                                                                                 |
| containing no unknown parameters                                                             | (3)                                                                                                    |
|                                                                                              | a) x = Bhim loses xnB(9,0.2)                                                                           |
| ) Population - All the people in the town who                                                |                                                                                                        |
| Competent in the rown and                                                                    | P(x=3)=(9)0.230.86 = 01762                                                                             |
| Can vote                                                                                     | $P(x=3) = {9 \choose 3} 0.2^{3} 0.8^{6} = 0.1762$                                                      |
| Statistic - The percentuge voting for Dr. Smith                                              | 1) P(X < 4) = 0.9804                                                                                   |
|                                                                                              | 1 1 (JC 54) -0.9804                                                                                    |
| 1) Sampling distribution. The probability distribution of those voting for Dr.Smith from all |                                                                                                        |
| of those voting for Dr.Smith from all                                                        | c) $x \sim B(60, 0.05)$ $M = 00 = 60 \times 0.05 = 3$                                                  |
| possible samples or 100.                                                                     | c) $\propto \sim B(60,0.05)$ $M = np = 60 \times 0.05 = 3$ $\nabla^2 = np(1-p) = 3 \times 0.95 = 2.85$ |
| position samples of 100.                                                                     | - When his 2010 125 5.00                                                                               |
|                                                                                              | xxxpo(3) P(DC>4) =1-P(xx4) =0-184=                                                                     |
|                                                                                              | 10(s) 1(seri) -1-1(xe4) -0184.                                                                         |
|                                                                                              |                                                                                                        |
|                                                                                              | 3. A rectangle has a perimeter of 20 cm. The length, X cm, of one side of this rectangle is            |
|                                                                                              | uniformly distributed between 1 cm and 7 cm.                                                           |
|                                                                                              | The state of the master of the most than 6 cm                                                          |
|                                                                                              | Find the probability that the length of the longer side of the rectangle is more than 6 cm long.       |
|                                                                                              | (5)                                                                                                    |
|                                                                                              | x~4[1,7] \$1                                                                                           |
|                                                                                              |                                                                                                        |
|                                                                                              | +                                                                                                      |
|                                                                                              |                                                                                                        |
|                                                                                              | 0//> 0/> 1.3                                                                                           |
|                                                                                              | P(x>6) u P(x<4) = + = = =============================                                                  |
|                                                                                              | 9 9                                                                                                    |

4. The lifetime, 
$$X$$
, in tens of hours, of a battery has a cumulative distribution full  $X$  is  $X$  and  $X$  as  $X$  as  $X$  as  $X$  as  $X$  as  $X$  as  $X$  and  $X$  as  $X$  as  $X$  and  $X$  as  $X$  as  $X$  as  $X$  and  $X$  as  $X$  as

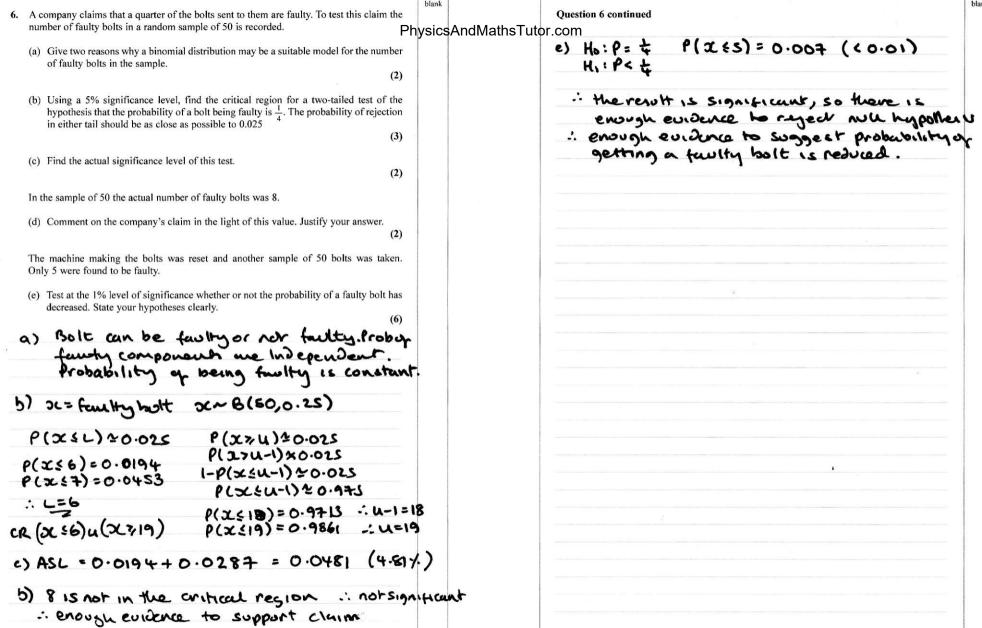
 $f(x) = \left(\frac{8}{9}(x+1)\right) | 1 \le x \le 1.5$ Otherwise

a) 0.6267 4 = 0.1542

Find the probability that, in a randomly chosen 2 hour period, (b) (i) all users connect at their first attempt, (ii) at least 4 users fail to connect at their first attempt. The company suffered from a virus infecting its computer system. During this infection it was found that the number of users failing to connect at their first attempt, over a 12 hour period, was 60. (c) Using a suitable approximation, test whether or not the mean number of users per hour who failed to connect at their first attempt had increased. Use a 5% level of significance and state your hypotheses clearly. a) (unneations are independent and occur at a constant rate b) as = failed connection 22 Po (8) 1) P(x=0) = e-8 = 0.000335 ii) P(x74) =>+P(x83) = 0.9576 P(x73) c) x~ Po(48) & N(48,48) Ho: λ=48 ρ(x>60) ⇒cc ρ(x>59.5) H1: λ>48 ρ(x>59) = P(Z > 59.5-48) = P(Z > 1.66) = P(1.66)

.. There is enough evidence to rect hull hypothesis as result is significant in enough evidence to suggest fulled connections

increased.


A company has a large number of regular users logging onto its website. On average 4 users every hour fail to connect to the company's website at their first attempt.

(1)

(5)

= 0.0485 (<0.05)

(a) Explain why the Poisson distribution may be a suitable model in this case.



7. The random variable 
$$Y$$
 has probability density function  $f(y)$  given by

$$f(y) = \begin{cases} by(a-y) & 0 \le y \le 3 \\ 0 & \text{otherwise} \end{cases}$$
where  $k$  and  $a$  are positive constants.

(a) (i) Explain why  $a \ge 3$ 
(ii) Show that  $k = \frac{2}{9(a-2)}$ 
(6)

Given that  $E(Y) = 1.75$ 
(b) show that  $a = 4$  and write down the value of  $k$ 
(c) sketch the probability density function,

(d) write down the mode of  $Y$ .

(a) i) A must be  $7 \le 3$ , otherwise when  $y = 3$  untitle is impossible.

(a) ii)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(b)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(c)  $\int f(y) = \int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(d)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(e)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(f)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(g)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(g)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow k \int ay - y^2 dy = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow x = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow x = 1$ 

(h)  $\int f(y) dy = 1 \Rightarrow 1$