

Mark Scheme (Unused)

January 2022

Pearson Edexcel International Advanced Level in Pure Mathematics P4 (WMA14)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P70349A

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will/be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- ___ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks
1(a)	$\frac{2}{\sqrt{9-2x}} = \frac{2}{3\sqrt{\left(1-\frac{2}{9}x\right)}}$ or $\frac{2}{\sqrt{9-2x}} = 2\left(9-2x\right)^{-\frac{1}{2}} = 2 \times \frac{1}{3}\left(1-\frac{2}{9}x\right)^{-\frac{1}{2}}$	Obtains $\sqrt{9-2x} = 3\sqrt{(1)}$	B1
	$\left(1 - \frac{2}{9}x\right)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-\frac{2}{9}x\right) + \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)}{2!}\left(-\frac{2}{9}x\right)^2 + \frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}{3!}\left(-\frac{2}{9}x\right)^3 + \dots$ M1: Attempts the binomial expansion of $(1 + kx)^n$ to get the third and/or fourth term with an acceptable structure. The correct binomial coefficient must be combined with the correct power of x and the correct power of x . A1: Correct simplified or unsimplified expansion (NB simplified is $x = 1 + \frac{1}{9}x + \frac{1}{54}x^2 + \frac{5}{1458}x^3 + \dots$)		M1 A1
	$\frac{2}{\sqrt{9-2x}} = \frac{2}{3} + \frac{2}{27}x + \frac{1}{81}x^2 + \frac{5}{2187}x^3 + \dots$	2 correct simplified terms	A1
		All correct	A1
(b)	$x = 1 \Rightarrow \frac{2}{\sqrt{9-2}} = \frac{2}{3} + \frac{2}{3}$ $\Rightarrow \sqrt{7} \approx 2 \div \frac{1652}{2187}$ Substitutes $x = 1$ and divide	" or $2 \times "\frac{2187}{1652}"$	(5) M1
	= 2.6477	Correct approximation	A1
	A14 4*	6 /1 \	(2)
	Alternative for (b): $x = 1 \Rightarrow \frac{2}{\sqrt{9-2}} = \frac{2}{3} + \frac{2}{27} + \frac{1}{81} + \frac{5}{2187} + \dots$ $\frac{2}{\sqrt{7}} = \frac{2\sqrt{7}}{7} \Rightarrow \sqrt{7} \approx \frac{7}{2} \times \frac{1652}{2187}$ Substitutes $x = 1$ and multiplies by $\frac{7}{2}$		M1
	= 2.6438	Correct approximation	A1
			Total 7

Question Number	Scheme	Notes	Marks
2(a)	$\frac{x}{y} = t$	Cao	B1
			(1)
(b)	$y = \frac{\left(\frac{x}{y}\right)^3}{2\left(\frac{x}{y}\right) + 1} \text{ or } x = \frac{\left(\frac{x}{y}\right)^4}{2\left(\frac{x}{y}\right) + 1}$	Uses the <i>y</i> coordinate to obtain <i>y</i> in terms of <i>x</i> and <i>y</i> or uses the <i>x</i> coordinate to obtain <i>x</i> in terms of <i>y</i> and <i>x</i>	M1
	$y = \frac{x^3}{2xy^2 + y^3} \Rightarrow y(2xy^2 + y^3) = x^3$ or $x = \frac{x^4}{2xy^3 + y^4} \Rightarrow x(2xy^3 + y^4) = x^4$	Uses correct algebra to eliminate the fractions	M1
	$x^3 - 2xy^3 - y^4 = 0*$	Cso	A1*
			(3)
			Total 4

Question Number	Scheme	Notes	Marks
3(a)	$3y^{2} - 11x^{2} + 11xy = 20y - 36x + 28$ $\Rightarrow 6y \frac{dy}{dx} - 22x + 11x \frac{dy}{dx} + 11y = 20 \frac{dy}{dx} - 36$ $M1: y^{2} \rightarrow Ay \frac{dy}{dx}$ $M1: 11xy \rightarrow px \frac{dy}{dx} + qy$ $A1: All correct$		M1M1A1
	$(6y+11x-20)\frac{dy}{dx} = 22x-11y-36 \Rightarrow \frac{dy}{dx} = \dots$ Collects terms in $\frac{dy}{dx}$ (must be 3 and from the appropriate terms) and makes $\frac{dy}{dx}$ the subject		
	$\frac{dy}{dx} = \frac{22x - 11y - 36}{6y + 11x - 20}$	Correct expression or correct equivalent	A1
			(5)
(b)	$x = 4 \Rightarrow 3y^2 - 176 + 44y = 20y - 144 + 28$	Substitutes $x = 4$ into C to obtain a 3TQ in y	M1
	$3y^2 + 24y - 60 = 0 \Rightarrow y = \dots$	Solves for <i>y</i>	M1
	y = -10 (,2)	Correct value	A1
	$(4,-10) \rightarrow \frac{dy}{dx} = \frac{88+110-36}{-60+44-20}$	Substitutes $x = 4$ and their negative y into their $\frac{dy}{dx}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9}{2}$	Correct value	A1
			(5) Total 10

Question Number	Scheme	Notes	Marks	
4(a)	$\frac{4-4x}{x(x-2)^2} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$	Correct form for the partial fractions	B1	
	$4-4x = A(x-2)^{2} + Bx(x-2) + Cx$ $\Rightarrow A = \dots \text{ or } B = \dots \text{ or } C = \dots$	Uses a correct strategy to find at least one of their constants	M1	
	4-4x = 1 - 1 - 2	2 correct constants	A1	
	$\frac{4-4x}{x(x-2)^2} \equiv \frac{1}{x} - \frac{1}{x-2} - \frac{2}{(x-2)^2}$	All correct	A1	
			(4)	
(b)	$\int \left(\frac{1}{x} - \frac{1}{x - 2} - \frac{2}{(x - 2)^2}\right) dx = \ln x - \ln(x - 2) + \frac{2}{x - 2}(+c)$		M1	
	M1 for $\int \frac{\alpha}{x} dx = \beta \ln x$ or $\int \frac{\alpha}{x-2} dx = \beta \ln(x-2)$			
	M1 for $\int \frac{\alpha}{(x-2)^2} dx = \frac{\beta}{x-2}$		A1	
	A1: All o	Correct	(3)	
(c)	$\left[\ln x - \ln(x-2) + \frac{2}{x-2}\right]_{3}^{5} = \left(\ln x - \ln(x-2) + \frac{2}{x-2}\right)_{3}^{5} = \left(\ln x - \ln(x-2) +$	$(5 - \ln 3 + \frac{2}{3}) - (\ln 3 - \ln 1 + 2)$	M1	
	$= \ln \frac{5}{9} - \frac{4}{3}$			
	M1: Correct use of limits and reache	s the required form using log rules	A1	
	A1: Correc			
			(2)	
			Total 9	

		1	
Question Number	Scheme	Notes	Marks
5(a)	$4+2\lambda = 13+5\mu$ $4-3\lambda = -1+\mu$ $-5+6\lambda = 4-3\mu$	For writing down any 2 of these equations.	M1
	E.g. $4+2\lambda = 13+5\mu$ $4-3\lambda = -1+\mu$ $\Rightarrow \lambda = \dots \text{ or } \mu = \dots$	Full method for finding λ or μ	M1
	$\lambda = 2, \ \mu = -1$	Both correct values	A1
	$-5+6\lambda = -5+12=7$ $4-3\mu = 4+3=7$ So lines intersect	Shows that the parameters satisfy the third equation and makes a conclusion.	B1
	$\lambda = 2 \to (4+4)\mathbf{i} + (4-6)\mathbf{j} + (-5+12)\mathbf{k}$ or $\mu = -1 \to (13-5)\mathbf{i} + (-1-1)\mathbf{j} + (4+3)\mathbf{k}$	Uses their λ or μ to find A .	M1
	$8\mathbf{i} - 2\mathbf{j} + 7\mathbf{k}$	Correct vector or coordinates	A1
			(6)
(b)	$\begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix} \bullet \begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix} = 10 - 3 - 18 = \sqrt{2^2 + 3^2 + 6^2} \sqrt{5^2 + 1^2 + 3^2} \cos \theta$		M1
	Full attempt at the scalar product between the direction vectors		
	$\cos\theta = \pm \frac{11}{7\sqrt{35}}$	Correct magnitude for $\cos \theta$ (may be implied by e.g. $\theta = 105.4$ or 74.6	A1
	$\theta = 74.6^{\circ}$	Awrt 74.6	A1
			(3)
(c)	$ 2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} = \sqrt{2^2 + 3^2 + 6^2} = 7$	Finds the magnitude of the direction of l_1	M1
	$35 \div 7 = 5 \Rightarrow \lambda = 5$ $8\mathbf{i} - 2\mathbf{j} + 7\mathbf{k} \pm 5(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$	Correct strategy for one of the points	M1
	(18,-17,37) or $(-2,13,-23)$	One correct point (ignore labels)	A1
	P(18,-17,37) and $Q(-2,13,-23)$	Correct points with correct labels	A1
			(4)
			Total 13

Question Number	Scheme	Notes	Marks		
6 Way 1	$\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x dx (+c)$ M1: For applying parts to obtain $\alpha e^{2x} \sin 3x \pm \beta \int e^{2x} \sin 3x dx (+c)$				
	A1: Correct expression $\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left\{ -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x dx \right\} (+c)$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and obtains } \alpha e^{2x} \cos 3x \pm \beta \int e^{2x} \cos 3x dx$				
	$\int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} \int e^{2x} \cos 3x dx (+c)$ Fully correct application of parts twice				
	$\int e^{2x} \cos 3x dx + \frac{4}{9} \int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x (+c)$ $\Rightarrow \frac{13}{9} \int e^{2x} \cos 3x dx = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x (+c) \Rightarrow \int e^{2x} \cos 3x dx = \dots$ Fully correct strategy for finding $\int e^{2x} \cos 3x dx$				
	$= \frac{3}{13}e^{2x}\sin 3x + \frac{2}{13}e^{2x}\cos 3x + k$ Cao				
Way 2	$\int_{a^{2x}\cos^3 x dx - \frac{1}{2}} a^{2x}\cos^3 x$	$\frac{3 \int_{a^{2x} \sin 3x dx(+a)}$	(6)		
	$\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \int e^{2x} \sin 3x dx (+c)$ M1: For applying parts to obtain $\alpha e^{2x} \cos 3x \pm \beta \int e^{2x} \sin 3x dx (+c)$		M1A1		
		J			
	A1: For applying parts to obtain αe^{2x} $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} + \frac{3}{2} e$	pression $\sin 3x - \frac{3}{2} \int e^{2x} \cos 3x dx \Big\} (+c)$	M1		
	A1: Correct exp $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} + \frac{3}{2} e^{2x} + \frac{3}{2}$	pression $\sin 3x - \frac{3}{2} \int e^{2x} \cos 3x dx \Big\} (+c)$ btains $\alpha e^{2x} \sin 3x \pm \beta \int e^{2x} \cos 3x dx$ $\sin 3x - \frac{9}{4} \int e^{2x} \cos 3x dx (+c)$	M1		
	A1: Correct exp $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} \right\}$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and of } $ $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \sin 3x dx$	pression $ \frac{1}{4} \sin 3x - \frac{3}{2} \int e^{2x} \cos 3x dx \Big\} (+c) $ betains $\alpha e^{2x} \sin 3x \pm \beta \int e^{2x} \cos 3x dx$ $ \sin 3x - \frac{9}{4} \int e^{2x} \cos 3x dx (+c) $ on of parts twice $ \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \sin 3x (+c) $			
	A1: Correct exp $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} \right\}$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and of } \int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x $	pression $\frac{1}{4}\sin 3x - \frac{3}{2}\int e^{2x}\cos 3x dx \Big\} (+c)$ betains $\alpha e^{2x}\sin 3x \pm \beta \int e^{2x}\cos 3x dx$ $\sin 3x - \frac{9}{4}\int e^{2x}\cos 3x dx (+c)$ on of parts twice $\frac{1}{4}e^{2x}\cos 3x + \frac{3}{4}e^{2x}\sin 3x (+c)$ $\sin 3x (+c) \Rightarrow \int e^{2x}\cos 3x dx = \dots$	A1		
	A1: Correct exp $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{2} \left\{ \frac{1}{2} e^{2x} \right\}$ Applies parts again to $\int e^{2x} \sin 3x dx \text{ and o}$ $\int e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x + \frac{3}{4} e^{2x} \cos 3x dx = \frac{1}{2} e^{2x} \cos 3x $	pression $\frac{1}{4}\sin 3x - \frac{3}{2}\int e^{2x}\cos 3x dx \Big\} (+c)$ betains $\alpha e^{2x}\sin 3x \pm \beta \int e^{2x}\cos 3x dx$ $\sin 3x - \frac{9}{4}\int e^{2x}\cos 3x dx (+c)$ on of parts twice $\frac{1}{4}e^{2x}\cos 3x + \frac{3}{4}e^{2x}\sin 3x (+c)$ $\sin 3x (+c) \Rightarrow \int e^{2x}\cos 3x dx = \dots$	A1		

Question Number	Scheme	Notes	Marks
7(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 300 - kV \Rightarrow \int \frac{dV}{300 - kV} = \int \mathrm{d}t$	Correct separation of variables	B1
	$\int \frac{dV}{300 - kV} = -\frac{1}{k} \ln \left(300 - kV \right)$	$\int \frac{dV}{300 - kV} = \alpha \ln \left(300 - kV \right)$	M1
	$-\frac{1}{k}\ln(300 - kV) = t + c$	Correct equation including a constant of integration	A1
	$-\frac{1}{k}\ln(300 - kV) = t + c \Longrightarrow$		M1
	$\Rightarrow 300 - kV$ Correct processing to	•	1111
		remove the m	
	$kV = 300 - e^{-kt+d} \Rightarrow V = \frac{300}{k} - Be^{-kt}$ $V = \frac{300}{k} + Ae^{-kt} *$	Correct proof	A1*
	k		(5)
(b)	$V = 0, t = 0 \Rightarrow 0 = \frac{300}{k} + A \Rightarrow A = -\frac{300}{k}$	Uses $V = 0$ when $t = 0$ to find A in terms of k	M1
	$V = \frac{300}{k} - \frac{300}{k} e^{-kt} \Rightarrow \frac{dV}{dt} = 300e^{-kt}$	$\frac{\mathrm{d}V}{\mathrm{d}t} = \alpha \mathrm{e}^{-kt}$	M1
	$300e^{-10k} = 200 \Rightarrow e^{-10k} = \frac{2}{3} \Rightarrow k = \dots$	Uses $\frac{dV}{dt} = 200$ when $t = 10$ and correct processing to find k	M1
	$k = -\frac{1}{10} \ln \frac{2}{3}$	Oe e.g. $\frac{1}{10} \ln \frac{3}{2}$	A1
	200		(4)
(b) Way 2	$V = 0, t = 0 \Rightarrow 0 = \frac{300}{k} + A \Rightarrow A = -\frac{300}{k}$	Uses $V = 0$ when $t = 0$ to find A in terms of k	M1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 200, t = 10 \Rightarrow 200 = 300 - kV$ $\Rightarrow kV = 100$	Uses $\frac{dV}{dt} = 200$ when $t = 10$ to find a value for kV	M1
	$\Rightarrow kV = 100$ $V = \frac{300}{k} + Ae^{-kt} \Rightarrow kV = 300 - 300e^{-10k}$ $\Rightarrow 100 = 300 - 300e^{-kt} \Rightarrow e^{-10k} = \frac{2}{3} \Rightarrow k = \dots$	Substitutes for kV , kA and $t = 10$ and uses correct processing to find k	M1
	$k = -\frac{1}{10} \ln \frac{2}{3}$	Oe e.g. $\frac{1}{10} \ln \frac{3}{2}$	A1
(c)	$6000 = \frac{3000}{\ln 1.5} - \frac{3000}{\ln 1.5} e^{-\frac{t}{10} \ln 1.5}$ $\Rightarrow e^{-\frac{t}{10} \ln 1.5} = 1 - 2 \ln 1.5$ $\Rightarrow -\frac{t}{10} \ln 1.5 = \ln (1 - 2 \ln 1.5)$	Correct strategy using $V = 6000$ to reach $\alpha t = \dots$	M1
	t = 41	Correct value	A1
			(2) Total 11

Question Number	Scheme	Notes	Marks
8	Assume that there exist positive real numbers x and y such $\frac{9x}{y} + \frac{y}{x} < 6$	Starts the proof by contradicting the given statement	B1
	$\frac{9x}{y} + \frac{y}{x} < 6 \Rightarrow 9x^2 + y^2 < 6xy$ as x and y are both positive	Multiplies through by xy	M1
	$\Rightarrow 9x^2 + y^2 - 6xy < 0$ $\Rightarrow (3x - y)^2 < 0$	Reaches a correct contradictory statement	A1
	As x and y are positive real numbers, this is a contradiction and so $\frac{9x}{y} + \frac{y}{x} < 6 \text{ must be incorrect and so}$ $\frac{9x}{y} + \frac{y}{x} \dots 6^*$	Makes a suitable conclusion	A1*
			(4)
			Total 4

Question Number	Scheme	Notes	Marks
9(a)	$V = \pi \int y^2 dx = \pi \int y^2 \frac{dx}{d\theta} d\theta$ $= \pi \int (3\sin\theta - \sin 2\theta)^2 (-5\sin\theta) d\theta$	Applies $V = \pi \int y^2 \frac{dx}{d\theta} d\theta$ with or without the π	M1
	$\int (2 \cdot 2 \cdot 2 \cdot 2 \cdot 2)^2 (5 \cdot 2) dx$	Applies $\sin 2\theta = 2\sin \theta \cos \theta$	M1
	$= \pi \int (3\sin\theta - 2\sin\theta\cos\theta)^2 (-5\sin\theta) d\theta$	Fully correct integral in terms of $\sin \theta$ and $\cos \theta$ only (π not needed)	A1
	$= \pi \int \sin^2 \theta (3 - 2\cos \theta)^2 (-5\sin \theta) d\theta$		
	$V = -5\pi \int \sin^3 \theta (3 - 2\cos\theta)^2 d\theta$ $V = -5\pi \int_0^0 \sin^3 \theta (3 - 2\cos\theta)^2 d\theta$	Completes correctly with correct limits and no incorrect statements previously. The factor of π must be present throughout.	A1*
	$V = 5\pi \int_0^{\pi} \sin^3 \theta (3 - 2\cos \theta)^2 d\theta^*$		
			(4)
(b)	$u = \cos \theta \Rightarrow V = 5\pi \int \sin^3 \theta (3 - 2u)^2 \frac{du}{-\sin \theta}$	Applies the substitution correctly	M1
	$\theta = 0 \Rightarrow u = 1, \ \theta = \pi \Rightarrow u = -1$	Attempts to change θ limits to u limits	M1
	$V = -5\pi \int \sin^2\theta (3 - 2u)^2 du = -5\pi$	•	A1
	Correct integral in terms	s of <i>u</i> only	
	$(1-u^2)(3-2u)^2 = (1-u^2)(9-12u+4u^2)$	Attempt to expand	M1
	$=9-12u-5u^2+12u^3-4u^4$	Correct expansion	A1
	$V = 5\pi \int_{-1}^{1} (9 - 12u - 5u^2 + 1)$	$2u^3 - 4u^4 \bigg) du$	
	$=5\pi \left[9u - 6u^2 - \frac{5u^3}{3} + 3u^4\right]$	l1	M1
	Integrates and applies th	eir <i>u</i> limits	
	$=\frac{196}{3}\pi$	Cao	A1
			(7)
			Total 11