Pure Mathematics P2 Mark scheme

Ques	tion Scheme	Marks			
1(a) $f(x) = x^4 + x^3 + 2x^2 + ax + b$				
	Attempting $f(1)$ or $f(-1)$	M1			
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$	A1*			
	(as required) AG	cso			
		(2)			
(b	Attempting $f(-2)$ or $f(2)$				
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 \ \{ \Rightarrow -2a + b = -24 \}$	A1			
	Solving both equations simultaneously to get as far as $a = \dots$ or $b = \dots$	dM1			
	Any one of $a = 9$ or $b = -6$	A1			
	Both $a = 9$ and $b = -6$				
		(5)			
		(7marks)			
Altern M1:	For long division by $(x - 1)$ to give a remainder in <i>a</i> and <i>b</i> which is independent	of <i>x</i> .			
A1:	Or {Remainder = } $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer	given).			
(b) M1:	Attempting either $f(-2)$ or $f(2)$.				
A1:	<u>correct underlined equation</u> in <i>a</i> and <i>b</i> ; e.g. $16-8+8-2a+b=-8$ or equivale	nt			
	e.g. $-2a + b = -24$.	,			
dM1:	An attempt to eliminate one variable from 2 linear simultaneous equations in <i>a</i> and <i>b</i> .				
	Note that this mark is dependent upon the award of the first method mark.				
A1:					
A1:					
Alterr	Any one of $a = 9$ or $b = -6$.				
M1:	Any one of $a = 9$ or $b = -6$. Both $a = 9$ and $b = -6$ and a correct solution only.				
	Any one of $a = 9$ or $b = -6$. Both $a = 9$ and $b = -6$ and a correct solution only.				
A1:	Any one of $a = 9$ or $b = -6$. Both $a = 9$ and $b = -6$ and a correct solution only. Pative				

Then dM1A1A1 are applied in the same way as before.

Question	Sche	me	Marks
2(a)	$S_{\infty} = \frac{20}{1-\frac{7}{2}}; = 160$	Use of a correct S_{∞} formula	M1
	$1 - \frac{7}{8}$	160	A1
		1	(2)
(b)	$S_{12} = \frac{20\left(1 - \left(\frac{7}{8}\right)^{12}\right)}{1 - \frac{7}{8}}; = 127.77324$ $= 127.8 (1 \text{ dp})$	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around $\frac{7}{8}$) A1: awrt 127.8	M1 A1
			(2)
(c)	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working.	M1
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $\left(\frac{7}{8}\right)^{N}$	dM1
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $N \log \left(\frac{7}{8}\right) < \log \left(\frac{0.5}{\text{their } S_{\infty}}\right)$ or $N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}}\right)$	M1
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823$ $\Rightarrow N = 44$	$N = 44$ (Allow $N \ge 44$ but no $N > 44$	A1 cso
	An incorrect inequality statement at any the final mark. Some candidates do inequality is reversed in the final line of gain full marks for using =, as long as n	not realise that the direction of the f their solution. BUT it is possible to	
			(4)
	Alternative: Trial & Improvement M	fethod in (c):	
	Attempts $160 - S_N$ or S_N with a	t least one value for $N > 40$	M1
	Attempts $160 - S_N$ or S_N	with $N = 43$ or $N = 44$	dM1
	For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ with both values correct to 2 DP Eg: $160 - S_{43} = awrt \ 0.51 \ and \ 160 - S_{44} = awrt \ 0.45 \ or$ $S_{43} = awrt \ 159.49 \ and \ S_{44} = awrt \ 159.55$		
	N =	44	A1 cso
	Answer of $N = 44$ only with n	o working scores no marks	
			(4)
		()	8 marks)

Question	Scheme	Marks	
3(a)	x 0 0.25 0.5 0.75 1 y 1 1.251 1.494 1.741 2	B1 B1	
		(2)	
(b)	$\frac{1}{2} \times 0.25$, {(1+2)+2(1.251+1.494+1.741)} o.e.	B1 M1 A1ft	
	= 1.4965	A1	
		(4)	
(c)	 Gives any valid reason including Decrease the width of the strips Use more trapezia Increase the number of strips Do not accept use more decimal places 	B1	
		(1)	
		(7 marks)	
Notes:			
	1.494 1.741 (1.740 is B0). Wrong accuracy e.g. 1.49, 1.74 is B1B0		
M1: Rec add fror extr x va A1ft: Fol A1: Acc spec Sep A1t	 Need ½ of 0.25 or 0.125 o.e. Requires first bracket to contain first plus last values and second bracket to include no additional values from the three in the table. If the only mistake is to omit one value from second bracket this may be regarded as a slip and M mark can be allowed (An extra repeated term forfeits the M mark however) <i>x</i> values: M0 if values used in brackets are <i>x</i> values instead of <i>y</i> values ft: Follows their answers to part (a) and is for {correct expression} 		

ion				Scheme		Marks
	A solution	n based ar	ound a tab	le of resul	ts	
		2	2 -			
	n	n^2	$n^2 + 2$			
	1	1	3	Odd		
	2	4	6	Even		
	3	9	11	Odd		
	4	16	18	Even		
	5 6	25 36	27 38	Odd Even		
	0	50	30	Even		
	When <i>n</i> i	s odd, n^2 i	s odd (odd	\times odd = od	d) so $n^2 + 2$ is also odd	M1
			ers n , $n^2 + \frac{1}{2}$ e 4 times ta		ld and so cannot be divisible by 4 n)	A1
When <i>n</i> is even, n^2 is even and a multiple of 4, so $n^2 + 2$ cannot be a multiple of 4			M1			
Fully correct and exhaustive proof. Award for both of the cases above plus a			A1*			
final statement "So for all <i>n</i> , $n^2 + 2$ cannot be divisible by 4"						
			• `			(4)
			raic) proof			
	If <i>n</i> is even	n, $n = 2k$,	so $\frac{n^2 + 2}{4} =$	$=\frac{\left(2k\right)^2+2}{4}$	$=\frac{4k^2+2}{4}=k^2+\frac{1}{2}$	M1
	If <i>n</i> is odd	, n = 2k + 2	l, so $\frac{n^2 + 2}{4}$	$\frac{2}{4} = \frac{\left(2k+1\right)}{4}$	$\frac{k^2+2}{4} = \frac{4k^2+4k+3}{4} = k^2+k+\frac{3}{4}$	M1
	For a parti	al explana	tion stating	that		
• either of $k^2 + \frac{1}{2}$ or $k^2 + k + \frac{3}{4}$ are not a whole numbers.				A1		
• with some valid reason stating why this means that $n^2 + 2$ is not a multiple of 4.						
	Full proof with no errors or omissions. This must include					
	• The conjecture					
		• Correct notation and algebra for both even and odd numbers				A1*
	• A full explanation stating why, for all n , $n^2 + 2$ is not divisible by 4					
						(4)
					(4 marks

5(a)						
	$(S=)a + (a+d) + \dots + [a+(n-1)d]$		B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1		
	$(S =)[a+(n-1)d] + \dots + a$	M1: for reversing series (dots needed)	M1			
	$2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$	dM1: for adding, must have $2S$ and be a genuine attempt. Either line is sufficient. Dependent on 1^{st} M1.	dM1			
	2S = n[2a + (n-1)d]	(NB –Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)				
	$S = \frac{n}{2} \left[2a + (n-1)d \right] \operatorname{cso}$					
				(4)		
(b)	$600 = 200 + (N-1)20 \Longrightarrow N = \dots$		600 with a <u>correct</u> formula in an t to find N .	M1		
	N = 21	cso		A1		
				(2)		
(c)	Look for an AP first:					
	$S = \frac{21}{2} (2 \times 200 + 20 \times 20) \text{ or}$ $\frac{21}{2} (200 + 600)$	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (b) where $3 < N < 52$ and $a = 200$ and $d = 20$.				
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20) \text{ or}$ $\frac{20}{2} (200 + 580)$ $(= 8400 \text{ or } 7800)$	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (b) where $3 < N < 52$ and $a = 200$ and d				
	Then for the constant terms:					
	$600 \times (52 - "N") (= 18600)$	M1: $600 \times k$ where k is an integer and 3 $< k < 52$		M1		
		through	correct un-simplified follow n expression with their k ent with n so that 52	A1ft		
	So total is 27000	cao		A1		
	There are no mark	ks in (c) f	or just finding S52			
				(5)		

79

Question	S	cheme	Marks		
6(i)	$\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{or} \ \log_2\left(\frac{5x+4}{2x}\right) = 3 \text{or} \ \log_2\left(\frac{5x+4}{x}\right) = 4$				
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{or} \left(\frac{5x+4}{2x}\right)$	$= 2^3 \qquad \text{or}\left(\frac{5x+4}{x}\right) = 2^4$	M1		
	$16x = 5x + 4 \implies x = (\text{depends on M})$	s and must be this equation or equiv)	dM1		
	$x = \frac{4}{11}$ or exact recurring decimal 0	.36 after correct work	A1 cso		
	Alternative				
	$\log_2(2x) +$	$3 = \log_2(5x + 4)$			
	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$	earns 2^{nd} M1 (3 replaced by $\log_2 8$)	2 nd M1		
	Then $\log_2(16x) = \log_2(5x + 4)$ earns	s 1 st M1 (addition law of logs)	1 st M1		
	Then final M1 A1 as before		dM1A1		
			(4)		
(ii)	$\log_a y + \log_a 2^3 = 5$		M1		
	$\log_a 8y = 5$	Applies product law of logarithms	dM1		
	$y = \frac{1}{8}a^5 \qquad \mathbf{cso}$	$y = \frac{1}{8}a^5$ cso	A1		
			(3)		
			(7 marks)		
Notes:					
into	one log term .	of logarithms correctly to make two log t			
	(0), $\log_2 8$ or $\log_2 16$ i.e. using connection	1		
dM1: Obt	 between log base 2 and 2 to a power. This may follow an error. Use of 3² is M0 Obtains correct linear equation in <i>x</i>. usually the one in the scheme and attempts <i>x</i> = cso. Answer of 4/11 with no suspect log work preceding this. 				
dM1: (She	Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ (Should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$				

7(a)		Marks			
	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1			
	(10, 8)	A1			
		(2)			
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) "100" + "64" - 139$	M1			
	<i>r</i> = 5*	A1			
		(2)			
(c)	Substitute $x = 13$ into the equation of circle and solve quadratic to give $y =$				
	e.g. $x = 13 \implies (13 - 10)^2 + (y - 8)^2 = 25 \implies (y - 8)^2 = 16$	A1 A1			
	so $y = 4$ or 12				
	N.B. This can be attempted via a 3, 4, 5 triangle so spotting this and achieving one value for y is M1 A1. Both values scores M1 A1 A1				
		(3)			
(d)	$OC = \sqrt{10^2 + 8^2} = \sqrt{164}$	M1			
	Length of tangent = $\sqrt{164 - 5^2} = \sqrt{139}$	M1 A1			
		(3)			
	8) Answer only scores both marks.				
	: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ sins $(\pm 10, \pm 8)$				
M1: Obta					
M1: Obta A1: Cent (b) M1: For a Allor	$(\pm 10, \pm 8)$	ify <i>r</i> =			
M1: Obta A1: Cent (b) M1: For a Allow A1*: $r = 5$ Alternative	this $(\pm 10, \pm 8)$ re is $(-g, -f)$, and so centre is $(10, 8)$. a correct method leading to $r =$, or $r^2 =$ w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident This is a printed answer, so a correct method must be seen.	ify r=			
M1: Obta A1: Cent (b) For a M1: For a Allow A1*: $r = 5$ Alternative (b)	this $(\pm 10, \pm 8)$ re is $(-g, -f)$, and so centre is $(10, 8)$. a correct method leading to $r =$, or $r^2 =$ w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident This is a printed answer, so a correct method must be seen.	ify r=			
M1: Obta A1: Cent (b) M1: For a Allow A1*: $r = 5$ Alternative (b) M1: Atten	the formation $(\pm 10, \pm 8)$ re is $(-g, -f)$, and so centre is $(10, 8)$. a correct method leading to $r =$, or $r^2 =$ w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident This is a printed answer, so a correct method must be seen. :	ify r=			
M1: Obta A1: Cent (b) M1: For a Allow A1*: $r = 5$ Alternative (b) M1: Atten A1*: $r = 5$ (c) M1: Subs equa	the construction of the c				

PMT

Question 7 notes continued

(d)

- M1: Uses Pythagoras' Theorem to find length OC using their (10,8)
- **M1:** Uses Pythagoras' Theorem to find *OX*. Look for $\sqrt{OC^2 r^2}$
- A1: $\sqrt{139}$ only

Question	n Scheme	Marks			
8(a)	Substitutes $x = 1$ in C_1 : $y = 10x - x^2 - 8 = 10 - 1 - 8 = 1$	B1			
	and in C_2 : $y = x^3 = 1^3 = 1 \implies (1, 1)$ lies on both curves.				
		(1)			
(b)	$10x - x^2 - 8 = x^3$	B1			
	$x^3 + x^2 - 10x + 8 = 0$				
	$(x-1)(x^2+2x-8) = 0$	M1 A1			
	$(x-1)(x+4)(x-2) = 0 \qquad x = 2$	M1 A1			
	(2, 8)	A1			
		(6)			
(c)	$\int \left\{ \left(10x - x^2 - 8\right) - x^3 \right\} \mathrm{d}x$	M1			
	$=5x^2 - \frac{x^3}{3} - 8x - \frac{x^4}{4}$	M1 A1			
	Using limits 2 and 1: $\left(20 - \frac{8}{3} - 16 - 4\right) - \left(5 - \frac{1}{3} - 8 - \frac{1}{4}\right)$	M1			
	$=\frac{11}{12}$	A1			
		(5)			
		(12 marks)			
Notes:					
(a)					
B1: Su	abstitutes x = nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both.				
(b)					
	ets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$	• 1 1•			
	ivides by $(x-1)$ to form a quadratic factor. Allow any suitable algebraic method vision or inspection.	including			
	principal or inspection. principal or insp				
	or factorising of their quadratic factor.				
A1: A	chieves $x=2$				
A1: C	oordinates of $B = (2, 8)$				
(c)					
· /	For knowing that the area of $R = \int \{(10x - x^2 - 8) - x^3\} dx$				
	or knowing that the area of $R = \int \{(10x - x^2 - 8) - x^3\} dx$				
M1: Fo	·				
M1: Fo	or knowing that the area of $R = \int \{(10x - x^2 - 8) - x^3\} dx$ his may also be scored for finding separate areas and subtracting. For raising the power of x seen in at least three terms.				

Question 8 notes continued	
M1:	For using the limits "2" and 1 in their integrated expression. If separate areas have been attempted, "2" and 1 must be used in both integrated expressions.
A1:	For $\frac{11}{12}$ or exact equivalent.

S	cheme	Marks
Way 1 Divides by $\cos 3\theta$ to give $\tan 3\theta = \sqrt{3} \text{so} \Rightarrow (3\theta) = \frac{\pi}{3}$	Way 2 Or Squares both sides, uses $\cos^2 3\theta + \sin^2 3\theta = 1$, obtains $\cos 3\theta = \pm \frac{1}{2}$ or $\sin 3\theta = \pm \frac{\sqrt{3}}{2}$	M1
	so $(3\theta) = \frac{\pi}{3}$	
Adds π or 2π to previous value of an	ngle(to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1
So $\theta = \frac{\pi}{9}$	$\frac{4\pi}{9}$, $\frac{7\pi}{9}$ (all three, no extra in range)	Al
		(3)
$4(1 - \cos^2 x) + \cos x = 4 - k$	Applies $\sin^2 x = 1 - \cos^2 x$	M1
Attempts to solve $4\cos^2 x - \cos x - \frac{1}{2}$	$k = 0$, to give $\cos x =$	dM1
0	$x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}}$	A1
or other correct equivalent		(3)
$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4}$	(see the note below if errors are made)	M1
Obtains two solutions from $0, 139$, 221 3.86 in radians)	dM1
, , , , , , , , , , , , , , , , , , ,	rt 139 and 221) must be in degrees	A1
		(3)
		(9 marks)

M1: Obtains
$$\frac{\pi}{3}$$
. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$. Need not see working here. May be implied by $\theta = \frac{\pi}{9}$ in final answer (allow $(3\theta) = 1.05$ or $\theta = 0.349$ as decimals or $(3\theta) = 60$ or $\theta = 20$ as degrees for this mark). Do not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$

Question

9(i)

(ii)(a)

(b)

Notes:

(i)

M1: Adding π or 2π to a previous value however obtained. It is not dependent on the previous mark. (May be implied by final answer of $\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$). This mark may also be given for answers as decimals [4.19 or 7.33], or degrees (240 or 420).

85

Quest	Question 9 notes continued			
A1:	Need all three correct answers in terms of π and no extras in range .			
NB:	$\theta = 20^{\circ}$, 80° , 140° earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0			
(ii)(a)				
M1:	Applies $\sin^2 x = 1 - \cos^2 x$ (allow even if brackets are missing e.g. $4 \times 1 - \cos^2 x$).			
	This must be awarded in (ii) (a) for an expression with k not after $k = 3$ is substituted.			
dM1:	Uses formula or completion of square to obtain $\cos x = \exp(\sin x)$			
	(Factorisation attempt is M0)			
A1:	cao - award for their final simplified expression			
(ii)(b)				
M1:	Either attempts to substitute $k = 3$ into their answer to obtain two values for $\cos x$			
	Or restarts with $k = 3$ to find two values for $\cos x$ (They cannot earn marks in ii(a) for			
	this). In both cases they need to have applied $\sin^2 x = 1 - \cos^2 x$ (brackets may be missing)			
	and correct method for solving their quadratic (usual rules – see notes) The values for $\cos x \mod be > 1$ or < -1 .			
dM1:	Obtains two correct values for <i>x</i>			
A1:	Obtains all three correct values in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.			