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1. (a) Express 7sin26 — 2cos26 in the form Rsin (20 — a), where R and o are constants,
R >0 and 0 < a < 90°. Give the exact value of R and give the value of a to
2 decimal places.
3)
(b) Hence solve, for 0 < 8 < 90°, the equation
7sin20 — 2cos260 = 4
giving your answers in degrees to one decimal place.
(4)
(c) Express 28sinfcosf + 8sin?0 in the form asin26 + bcos26 + ¢, where a, b and ¢
are constants to be found.
3)
(d) Use your answers to part (a) and part (c) to deduce the exact maximum value of
28sinfcos O + 8sin%0
)
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Question 1 continued
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2. Given that
3x2+4x -7 B C
—————=A+——+
(x+1)(x—3) x+1 x-3
(a) find the values of the constants A, B and C.
(4)
(b) Hence, or otherwise, find the series expansion of
32 +4x -7 |x|<1
(x+1)(x=3)
in ascending powers of X, up to and including the term in X?
Give each coefficient as a simplified fraction.
(6)
J
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Question 2 continued
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Question 2 continued
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3.

The function f is defined by
fix—> 2 +3kx+k? xeR, 4k <x<0
where K is a positive constant.

(a) Find, in terms of k, the range of f.

The function g is defined by
g:x—>2k—3x xeR
Given that gf (—2) = —12

(b) find the possible values of k.

(4)

(4)
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Question 3 continued
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Question 3 continued
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4. The curve C has equation

81y® + 64x°%y + 256x = 0

(@ Find j—y in terms of X and y.
X

(b) Hence find the coordinates of the points on C where g—y =0
X

(®)

(6)
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Question 4 continued
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Question 4 continued
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5. The angle X and the angle y are such that
tanx =m and 4tany=8m +5
where m is a constant.
Given that 16sec?x + 16sec?y = 537
(a) find the two possible values of m.
(4)
Given that the angle X and the angle y are acute, find the exact value of
(b) sinx
)
(c) coty
)
J
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Question 5 continued
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Question 5 continued
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6. Relative to a fixed origin O, the points A, B and C have coordinates (2, 1, 9), (5, 2, 7) and
(4, =3, 3) respectively.
The line | passes through the points A and B.
(a) Find a vector equation for the line I.
)
(b) Find, in degrees, the acute angle between the line | and the line AC.
©)
The point D lies on the line | such that angle ACD is 90°
(c) Find the coordinates of D.
(4)
(d) Find the exact area of triangle ADC, giving your answer as a fully simplified surd.
)
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Question 6 continued
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Question 6 continued
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Figure 1
Figure 1 shows a sketch of part of the curve with equation
X+ 7 3
Y= x-3 ¥
The region R, shown shaded in Figure 1, is bounded by the curve, the line with equation
X = 4, the x-axis and the line with equation X = 6
(a) Use the trapezium rule with 4 strips of equal width to find an estimate for the area of R,
giving your answer to 2 decimal places.

(4)

(b) Using the substitution U = 2X — 3, or otherwise, use calculus to find the exact area of R,
giving your answer in the form a + b /5, where a and b are constants to be found.
(7)
J
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Question 7 continued
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Question 7 continued
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8. A curve has parametric equations
X=1t?—t - A t=1
- YT
. dy . . N :
(@) Find ax in terms of t, giving your answer as a simplified fraction.
X
(4)
(b) Find an equation for the tangent to the curve at the point P where t = —1, giving your
answer in the form ax + by + ¢ = 0 where a, b and c are integers.
(4)
The tangent to the curve at P cuts the curve at the point Q.
(c) Use algebra to find the coordinates of Q.
()
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Question 8 continued
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Question 8 continued
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9.

(@) Find | xsin2xdx

3)
(b) Find | (x+sin2x)?dx

(4)

Y4
C
R
O z X
2
Figure 2
Figure 2 shows a sketch of part of the curve C with equation y = x+Sin 2x.
The region R, shown shaded in Figure 2, is bounded by C, the x-axis and the line
with equation X = %
The region R is rotated through 27 radians about the X-axis to form a solid of revolution.
(c) Find the exact value for the volume of this solid, giving your answer as a single,
simplified fraction.
3)
J
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Question 9 continued

=

5
g

o

<
<

s
s

S

oS
€
':2':?:2'

S5
R

-
i
R
2,

i

35

T V



PMT

DO i , IRTEANTHIS-AREA o Do
L L R O
(" 3\
L ¢
> c
S s
-1 QO

©

[¢B)

>

c

S

[

o

(&)

»

c

2

)

(%]

[¢B)

=}

@4
| J

9 4 8 A0 3 6 5 2

4

P 5

36



PMT

Leave |
blank

Question 9 continued
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10.

Diagram not
drawn to scale

Figure 3

Figure 3 shows a container in the shape of an inverted right circular cone which contains
some water.

The cone has an internal radius of 3m and a vertical height of 5m as shown in Figure 3.

At time t seconds, the height of the water is h metres, the volume of the water is Vm® and
water is leaking from a hole in the bottom of the container at a constant rate of 0.02m3s™!

[The volume of a cone of radius r and height h is %n’rzh.]

(a) Show that, while the water is leaking,

Jdh 1

T ke

where K is a constant to be found.
(5)
Given that the container is initially full of water,

(b) express h in terms of t.

(3)

(c) Find the time taken for the container to empty, giving your answer to the nearest minute.
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Question 10 continued
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Question 10 continued
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11.

(@ Giventhat 0 < f(x) < =, sketch the graph of y = f(x) where

f(x) = arccos(x — 1), 0<x<?2

(2)
The equation arccos (X — 1) — tanx = 0 has a single root a.
(b) Show that 0.9 < o < 1.1
(2)
The iteration formula
X.., = arctan(arccos (X — 1))
can be used to find an approximation for a.
(c) Taking x, = 1.1 find, to 3 decimal places, the values of X, and X, @
2
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Question 11 continued
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12. Given that k is a positive constant,

(a) sketch the graph with equation

y =2|x| —k

Show on your sketch the coordinates of each point at which the graph crosses the x-axis

and the y-axis.

(b) Find, in terms of k, the values of X for which

1 1
—k=—=x+ —
2|x| — k SX* Lk

)

(3)
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Question 12 continued
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Question 12 continued
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13. Ascientist is studying a population of insects. The number of insects, N, in the population,
t days after the start of the study is modelled by the equation

240
N = ,

1+ket6
where K is a constant.
Given that there were 50 insects at the start of the study,

(a) find the value of k
)

(b) use the model to find the value of t when N = 100
©)

(¢) Show that

v _ 1

d¢ p q

where p and q are integers to be found.
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Question 13 continued
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Question 13 continued
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