

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCE In IAL Core Mathematics C34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WMA02_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Qu Number	Sc	heme	Marks
1(a)	$2x^{3} = \pm x \pm 20 \text{ or } x^{3} = \frac{\pm x \pm 20}{2}$ $\Rightarrow x = \sqrt[3]{\frac{\pm x \pm 20}{2}}$	Correct order of operations including cube root. The "= 0" does not have to be seen initially and can be implied by e.g. $2x^3 = \pm x \pm 20$.	M1
	$x = \sqrt[3]{10 - \frac{1}{2}x}$ or $x = \sqrt[3]{\left(10 - \frac{1}{2}x\right)}$	Correct equation or exact equivalent e.g. $x = \sqrt[3]{10 - 0.5x}$ or $x = \sqrt[3]{-0.5x + 10}$ with no errors or incorrect statements. The vinculum should encompass both terms and as a rule of thumb should at least go beyond the "-" or the "+". $x = \pm \sqrt[3]{}$ scores A0. Isw once the correct answer is obtained.	A1
()			(2)
(a) Way 2	$x = \sqrt[3]{a - bx} \Rightarrow x^3 = a - bx$ $\Rightarrow x^3 + bx - a = 0$ $\Rightarrow 2x^3 + 2bx - 2a = 0$ $\Rightarrow a =, b =$	Correct order of operations e.g. cubes, collects to one side and multiplies by 2. Then compares coefficients to establish values for <i>a</i> and <i>b</i> .	M1
	$\Rightarrow a=10, b=\frac{1}{2}$	Correct values and apply isw if necessary.	A1
(b)		Substitutes $x_1 = 2.1$ into	
		$x_{n+1} = \sqrt[3]{a - bx_n}$ with their numerical	
	$x_2 = \sqrt[3]{10 - \frac{1}{2} \times 2.1}$	values of a and b in order to find x_2 . Can be implied by awrt 2.076 if a and b are correct otherwise may need to check.	M1
	$(x_2 =)$ awrt 2.076 $(x_3 =)$ awrt 2.077	Correct values.	A1
()			(2)
(c)	f(2.0765) = -0.016 $f(2.0775) = 0.011$	Chooses a suitable interval for x , which is within 2.077 ± 0.0005 and attempts to evaluate $f(x) = 2x^3 + x - 20$ for both values and obtains at least one value correct to 1 sig fig (rounded or truncated).	M1
	Sign change (negative, positive) therefore root.	Both values correct awrt (or truncated) 1 sf, sign change (or e.g. < 0, > 0 or f(2.0765).f(2.0775) < 0 or f(2.0765) < 0 < f(2.0775)) and a minimal conclusion e.g. therefore root. Allow tick, QED, hash, square box, smiley face etc.	A1
	Attempts at repeated iter	ration scores no marks in (c)	(2)
(d)	0.077	Cao	B1 (2)
(u)	0.077		(1)
			[7 marks]

Question Number	Scheme	Marks
	Note that use of $\ln kx$ for $\ln x$ is acceptable throughout.	
2(a)	$\int \frac{4x+3}{x} dx \to \int \dots + \frac{b}{x} dx = \dots + \dots \ln x$ Attempts to divide to obtain $\dots + \frac{b}{x}$ and uses $\int \frac{1}{x} dx = \ln x$ or $\int \frac{1}{x} dx = \ln kx$	M1
	$= 4x + 3\ln x + (c)$ There is no requirement for the + c	A1
		(2)
(a) Way 2	$\int \frac{4x+3}{x} dx = \int (4x+3)x^{-1} dx = (4x+3)\ln x - \int 4\ln x dx$ $\int \frac{4x+3}{x} dx = (4x+3)\ln x - \int \ln x dx = (4x+3)\ln x - 4x \ln x + kx$ This method requires 2 applications of parts to obtain an expression of this form	M1
	= $(4x+3) \ln x - 4x \ln x + 4x (+c)$ There is no requirement for the + c	A1
(a) Way 3	$\int \frac{4x+3}{x} dx = \int (4x+3)x^{-1} dx = (2x^2+3x)x^{-1} + \int (2x^2+3x)x^{-2} dx$ $= (2x+3) + \int (2+3x^{-1}) dx = 2x+3+2x+3\ln x (+c)$ $\int \frac{4x+3}{x} dx = (2x^2+3x)x^{-1} + + \ln x$ This method requires the applications of parts to obtain an expression of this form	M1
	$= (2x^2 + 3x)x^{-1} + 2x + 3\ln x (+c)$ There is no requirement for the + c	A1

2(b)	$\frac{dy}{dx} = \frac{(4x+3)y}{x} \Rightarrow \int \frac{1}{y^{\frac{1}{2}}} dy = \int \frac{(4x+3)}{x} dx$ Separates the variables correctly. $Accept \int \frac{1}{y^{\frac{1}{2}}} dy = \int \frac{(4x+3)}{x} dx \text{ or equivalent.}$ With or without the integral signs and possibly without the "dx" and/or "dy" so look for $\frac{1}{y^{\frac{1}{2}}} = \frac{(4x+3)}{x}$		B1
	$2y^{\frac{1}{2}} = 4x + 3\ln x + c$	Look for $ky^{\frac{1}{2}}$ = their (a) or $ky^{\frac{1}{2}}$ = an attempt at $\int \frac{4x+3}{x} dx$	M1
		$2y^{\frac{1}{2}} = 4x + 3\ln x + c \text{ or equivalent}$ including the + c	A1
	$x = 1, y = 25$ $\Rightarrow 2(25)^{\frac{1}{2}} = 4(1) + 3\ln(1) + c \Rightarrow c =$	Substitutes $x = 1$ and $y = 25$ into their integrated equation and proceeds to obtain a value for c .	M1
	$y = \left(2x + \frac{3}{2}\ln x + 3\right)^2$	Correct equation including " $y =$ ". The $2x + \frac{3}{2} \ln x + 3$ can be in any equivalent correct form.	A1
			(5) [7 marks]
			[/ marks]

Question Number	Sch	eme	Marks
3(a)	k = 3	Correct value	B1
			(1)
(b)	$\sec^2 \theta = 1 + \tan^2 \theta \Rightarrow y = 1 + \left(\frac{x}{\sqrt{3}}\right)^2$	Attempts to use $1 + \tan^2 \theta = \sec^2 \theta$ with the given parametric equations to obtain an equation in terms of x and y only.	M1
	$\Rightarrow y = 1 + \frac{1}{3}x^2$	$y = 1 + \frac{1}{3}x^2 \text{ or } f(x) = 1 + \frac{1}{3}x^2$ (Allow $y/f(x) = \frac{3+x^2}{3}$) but not $y = 1 + \left(\frac{x}{\sqrt{3}}\right)^2$	A1
	Note that the follo	owing is also valid:	
	$\tan \theta = \frac{x}{\sqrt{3}} \Rightarrow \cos \theta = \frac{x}{\sqrt{3}}$	$\frac{\sqrt{3}}{x^2 + 3} \Rightarrow \cos^2 \theta = \frac{3}{x^2 + 3}$	
	$y = \sec^2 \theta \Rightarrow \frac{1}{2}$	$\frac{1}{\cos^2 \theta} = \frac{x^2 + 3}{3}$	
		d $\sec \theta = \frac{1}{\cos \theta}$ to obtain an equation in	
	terms of x and y only.		
	A1: As above		(2)
(c)		Differentiates their $f(x)$ with evidence	(2)
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3}x$	of $x^n \to x^{n-1}$ or for differentiating to a correct form for their function.	M1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=1} = \frac{2}{3}(1) = \dots$	Attempts to find their $\frac{dy}{dx}$ at $x = 1$ (or their attempt at x)	M1
	$(Gradient =) \frac{2}{3}$	For $\frac{2}{3}$	A1
			(3)
(c) Way 2	$\frac{dx}{d\theta} = \sqrt{3}\sec^2\theta, \frac{dy}{d\theta} = 2\sec^2\theta\tan\theta$ $\frac{dy}{dx} = \frac{2\sec^2\theta\tan\theta}{\sqrt{3}\sec^2\theta}$	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{ \sec^2 \theta \tan \theta}{ \sec^2 \theta}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\sec^2\left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right)}{\sqrt{3}\sec^2\left(\frac{\pi}{6}\right)}$	Attempts to find their $\frac{dy}{dx}$ at $\theta = \frac{\pi}{6}$	M1
	$(Gradient =) \frac{2}{3}$	For $\frac{2}{3}$	A1
			[6 marks]

Question Number	Sch	neme	Marks
	Mark (a) aı	nd (b) together	
4(a)	Accept alternative notation for $\frac{dy}{dx}$ throughout e.g. y' You can ignore a spurious " $\frac{dy}{dx}$ = " for the first 3 marks		
_			
	$3y e^{-2x} = 4x^2 + y^2 + 2 \Rightarrow 3e$	$e^{-2x} \frac{dy}{dx} - 6ye^{-2x} = 8x + 2y \frac{dy}{dx}$	
	M1: Attempts the product rule o	on $3ye^{-2x}$ to give $pe^{-2x} \frac{dy}{dx} \pm qye^{-2x}$	
	(If the product rule is quote	d it must be correct with the +)	
	$\underline{M1}$: Attempts the chain	in rule on y^2 to give $Ay \frac{dy}{dx}$	<u>M1 M1</u>
		$3e^{-2x}\frac{dy}{dx} - 6ye^{-2x} = 8x + 2y\frac{dy}{dx}$	A1
	May not be seen as an equation so	o allow A1 if $3e^{-2x} \frac{dy}{dx} - 6ye^{-2x}$ and	
	$8x + 2y \frac{dy}{dx}$ are seen separately		
	Note that this no	tation is acceptable:	
	$3ye^{-2x} = 4x^2 + y^2 + 2 \Rightarrow 3e^{-2x}$	$\frac{1}{e^{-2x}dy - 6ye^{-2x}dx} = 8xdx + 2ydy$	
		in $3ye^{-2x}$ to give $pe^{-2x}dy \pm qye^{-2x}dx$ in rule on y^2 to give $Aydy$	
		$3e^{-2x}dy - 6ye^{-2x}dx = 8x dx + 2y dy$	
	Then as below but collects terms in	n dy (must be two) and makes $\frac{dy}{dx}$ the	
		the formula	
	(2-2r -) dy2r	Collects terms in $\frac{dy}{dx}$ (must be two –	
	$(3e^{-2x} - 2y)\frac{dy}{dx} = 8x + 6ye^{-2x}$	one from the product and one from the	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \dots$	$\frac{2y}{dx} \frac{dy}{dx}$) and makes $\frac{dy}{dx}$ the subject of the formula	1411
-		Correct expression (allow equivalent	
	 = 	correct forms)	A1
			(5)

	T		_
4(b)	$x = 0, y = 2 \Rightarrow$ $\frac{dy}{dx} = \frac{8(0) + 6(2)e^{-2(0)}}{3e^{-2(0)} - 2(2)} = (-12)$	Substitutes $x = 0$, $y = 2$ into their $\frac{dy}{dx}$ or into their differentiated equation and makes $\frac{dy}{dx}$ the subject. May be implied by their value for $\frac{dy}{dx}$.	M1
	$y-2 = -\frac{1}{"-12"}(x-0)$	Uses correct form of the equation of the normal. Look for $y-2=-\frac{1}{theirdy/dx\big _{(0,2)}}\big(x-0\big)$ where their dy/dx is non-zero or not undefined. Dependent on the first method mark.	dM1
	$y = \frac{1}{12}x + 2$	Cao cso	A1
			(3)
			[8 marks]

Question Number	Sche	eme	Marks
5(a)	$t = 0, \theta = 38 \Longrightarrow 38 = 20 + Ae^{-k \times 0}$	For substituting $t = 0$ and $\theta = 38$ into $\theta = 20 + Ae^{-kt}$	M1
	$\Rightarrow A=18$	Correct value for A	A1
	A = 18 with no working	ng scores both marks	
			(2)
(b)	$t = 16, \theta = 24.5 \Rightarrow 24.5 = 20 + "18" e^{-k \times 1}$	For substituting $t = 16$ and $\theta = 24.5$ into $\theta = 20 + \text{their } "A" e^{-kt}$	M1
	$\Rightarrow 18e^{-k \times 16} = 4.5 \text{ or } e^{-k \times 16} = \frac{1}{4}$	This mark is for a correct equation with the constants combined. Allow equivalent correct equations e.g. $e^{16k} = 4$	A1
	\Rightarrow e ^{16k} =4=	$\Rightarrow 16k = \ln 4$	
	0		
	$\Rightarrow \ln 18e^{-k \times 16} = \ln 4.5 \Rightarrow \ln 18 + \ln 18$	1	
	\Rightarrow -16 k	$\tau = \ln \frac{1}{4}$	M1
	Uses correct log or exponential work to move from: $e^{\pm nk} = C$ to $\pm nk = \alpha \ln C$ or $pe^{\pm nk} = q$ to $\pm nk = \alpha \ln \beta$		
	$e^{\pm nk} = C$ to $\pm nk = \alpha \ln C$ or $-16k = \ln \frac{1}{4} \Rightarrow k =$ Shows that		
	There must be at least one intermediate line between their $\pm nk = \alpha \ln C$ or		A1*
	their $\pm nk = \alpha \ln \beta$ and the printed answer.		Al
	So for example $-16k = \ln \frac{1}{4} \Rightarrow k = \frac{1}{8} \ln 2 * \text{ scores A0}$ as there is no		
	intermediate line.		
	No. The marks in part (b) can be seemed by		
	The marks in part (b) can be scored by using $\theta = 20 + Ae^{-kt}$ and substituting 2 out of: $A = 18$, $\theta = 24.5$, $k = \frac{1}{8} \ln 2$ to show that the 3rd variable is correct		
	followed by a conclus	1	
		-	(4)
(c)	$t = 40 \Rightarrow \theta = 20 + "18" e^{-\frac{1}{8} \ln 2 \times 40}$	Substitutes $t = 40$ into the given equation with their A and the given value of k to obtain a value for θ	M1
	$\Rightarrow \theta = \text{awrt } 20.6(^{\circ}C)$	Awrt 20.6	A1
	Correct answer only	scores both marks	
			(2)

5(d)	Examples:	
	• The lower limit is 20	
	\bullet $\theta > 20$	
	• As t tends to infinity temperature tends to 20	
	 The temperature cannot go below 20 	
	• e ^{-kt} tends towards zero so the temperature tends to 20	
	• e^{-kt} is always positive so the temperature is always bigger than 20	B1
	• Substitutes $\theta = 19$ in $\theta = 20 + "18" e^{-kt}$ (may be implied by e.g.	
	$e^{-kt} = -\frac{1}{18}$) and states e.g. that you cannot find the log of a negative	
	number or "which is not possible"	
	Do not accept e ^{-kt} cannot be negative without reference to the "20"	
		(1
		[9 marks

Question Number	Scheme	Marks
6	Mark (a)(i) and (ii) together	
(a)(i)(ii)	$(0,10a) \text{ or } \left(-\frac{5}{2}a,0\right)$	
	or	
	$(x = 0, y = 10a) \text{ or } \left(y = 0, x = -\frac{5}{2}a\right)$	B1
	One correct coordinate pair. Allow as separate coordinates or clear sight of the	
	"0's" and allow $ 10a $ for $10a$ and allow equivalents for $-\frac{5}{2}a$ e.g. $-\frac{10}{4}a$.	
	Ignore labelling of parts and points	
	$(0,10a)$ and $\left(-\frac{5}{2}a,0\right)$	
	or	
	$(x = 0, y = 10a) \text{ or } \left(y = 0, x = -\frac{5}{2}a\right)$	B1
	Two correct coordinate pairs. Allow as separate coordinates or clear sight of the	
	"0's" and allow $ 10a $ for $10a$ and allow equivalents for $-\frac{5}{2}a$ e.g. $-\frac{10}{4}a$.	
	Ignore labelling of parts and points	
	You can condone missing brackets e.g. $-\frac{5}{2}a$, 0 or 0, 10a but if the "0's" are	
	not evident in either case, e.g. if all that is seen is 10a and $-\frac{5}{2}a$ score B1B0	
	If the coordinates are consistently the wrong way round	
	e.g. $(10a,0)$ and $\left(0,-\frac{5}{2}a\right)$ score B1B0	
	If the coordinates are on the sketch, the zero's have to be seen to score both	
	marks but score B1B0 if the $10a$ and $-\frac{5}{2}a$ are seen in the correct places	
		(2

6(b)	upwards with one branch to the left ar with part of the V in all 4 quadrants need to cross (Ignore gradient as lo Do not be overly concern	negative y-axis and branches pointing and one branch to the right of the y-axis—the left branch does not necessarily the other "V" ong as it is a V shape) and by lack of symmetry. On to be adapted or a separate sketch.	B1 M1 on ePEN
	Intersections at $(-a,0)$ Can be seen as coordinates If the coordinates are shown away to $(-a,0),(a,0)$ and $(0,-a)$ and n	(a,0) and $(0,-a)$ only. or as shown in the diagram. from the sketch they must appear as must correspond with the sketch. the sketch has precedence.	B1 A1 on ePEN
6(c)	$-x-a = 4x+10a \Rightarrow x = \dots$ or $-x-a = -4x-10a \Rightarrow x = \dots$	Attempts to solve $-x-a=4x+10a$ or $-x-a=-4x-10a$ or equivalent equations to obtain x in terms of a .	(2) M1
	$-x-a = -4x-10a \Rightarrow x = \dots$ $x = -\frac{11}{5}a \text{ or } -3a$	One correct. Allow $-\frac{9}{3}a$ for $-3a$	A1
	$x = -\frac{11}{5}a \text{ and } -3a$	Both correct and no other values. Allow $-\frac{9}{3}a$ for $-3a$.	A1
	quadratic generally scores no m	h sides and to solve the resulting arks. However if you think such edit then use Review.	
			(3) [7 marks]

Question Number	Scheme		Marks
7(a)	$5\cos\theta - 3\sin\theta$		
	$R = \sqrt{5^2 + 3^2} = \sqrt{34}$	$R = \sqrt{34} \ \left(R = \pm \sqrt{34} \text{ is B0} \right)$	B1
	$\tan \alpha = \pm \frac{3}{5}$, $\tan \alpha = \pm \frac{5}{3} \implies \alpha =$		
	(Also allow $\cos \alpha = \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}}$, $\sin \alpha = \pm \frac{3}{\sqrt{34}}$ or $\pm \frac{5}{\sqrt{34}} \Rightarrow \alpha =$, where " $\sqrt{34}$ " is their R .) $\alpha = \arctan\left(\frac{3}{5}\right) = \text{awrt } 0.5404$ (Degrees is 30.96 and scores A0)		M1
			A1
			(3)

7(b)	$(4\pi t)$	
	$6 + 2.5\cos\left(\frac{4\pi t}{25}\right) - 1.5\sin\left(\frac{4\pi t}{25}\right) = 4.6 \Rightarrow \frac{\sqrt{34}}{2}\cos\left(\frac{4\pi t}{25} + 0.5404\right) = 4.6 - 1.5\sin\left(\frac{4\pi t}{25}\right) = 4.6 \Rightarrow \frac{4\pi t}{2}\cos\left(\frac{4\pi t}{25}\right) $	O
	$\Rightarrow \cos\left(\frac{4\pi t}{25} + "0.5404"\right) = \dots$	M1
	Uses part (a) and proceeds as far as	IVII
	$\cos\left(\frac{4\pi t}{25} \pm \text{their } 0.5404\right) = k \text{ or } \cos\theta \pm \text{their } 0.5404 = k \text{ or}$	
	$\cos t \pm \text{their } 0.5404 = k \text{ where } k < 1$.	
	Allow:	
	$\cos\left(\frac{4\pi t}{25} \pm \text{ their } 0.5404\right) = \text{awrt} - 0$.48
	$\cos\left(\frac{4\pi t}{25} + 0.5404\right) = -0.48$ or $\cos\theta \pm \text{their } 0.5404 = \text{awrt } -0.5404$	0.48 A1
	or $\cos t \pm \text{their } 0.5404 = \text{awrt} - 0$.48
	May see $-\frac{7\sqrt{34}}{85}$ or $-\frac{2.8}{\sqrt{34}}$ for -0	0.48
	$\frac{4\pi t}{25}$ + "0.5404" = 2.07 \Rightarrow $t = \dots$ or	
	$\frac{4\pi t}{25} + "0.5404" = 2\pi - 2.07 = 4.21 \Rightarrow t = \dots$	
	NB 2.07 may be seen as $\pi - 1.07$ and 4.21 may be seen as $\pi + 1.07$	
	$\cos\left(\frac{4\pi t}{25} \pm \text{their } 0.5404\right) = k \Rightarrow t = \text{ by first taking invcos then adds or}$	d M1
	subtracts their 0.5404 and applies $\frac{4\pi t}{25}$ to obtain a value for t.	
	Dependent on the previous method mark and may be implied by obtaining a value for t of awrt 3 or awrt 7.	
	awrt 3.05 or awrt 7.3 Allow awrt 3.05 or awrt 7.3	A1
	$\frac{4\pi t}{25} \pm 0.5404 = 2\pi - 2.07 \Rightarrow t = \dots$ and $\frac{4\pi t}{25} \pm 0.5404 = 2.07 \Rightarrow t = \dots$	= dd M1
	For a correct method to find a different value of t in the range Dependent on both previous method marks.	duivii
	3:03 or 15:03 or 3hrs 3min or 183minutes	
	and 7:18 or 19:18 or 7hrs18min or 438minutes	A1
		(6)
		[9 marks]

Qu Number	Scheme	Marks
8(a)	$f(x) = \frac{6x+2}{3x^2+5} \Rightarrow f'(x) = \frac{6(3x^2+5)-6x(6x+2)}{(3x^2+5)^2}$ or $f(x) = (6x+2)(3x^2+5)^{-1} \Rightarrow f'(x) = 6(3x^2+5)^{-1} - 6x(6x+2)(3x^2+5)^{-2}$ M1 for $\frac{\alpha(3x^2+5)-\beta x(6x+2)}{(3x^2+5)^2}$ or $\alpha(3x^2+5)^{-1} - \beta x(6x+2)(3x^2+5)^{-2}$ Condone obvious slips and bracketing errors e.g. $\frac{(6)3x^2+5-(6x)6x+2}{(3x^2+5)^2}$ as long as the intention is clear i.e. recovered in subsequent working If the product or quotient rule is quoted, it must be correct A1: Fully correct derivative in any form	M1 A1
	$\Rightarrow f'(x) = \frac{30 - 12x - 18x^2}{\left(3x^2 + 5\right)^2}$ Correct expression or equivalent e.g. $f'(x) = \frac{-6\left(3x^2 + 2x - 5\right)}{\left(3x^2 + 5\right)^2}$ e.g. $f'(x) = \frac{-6\left(3x^2 + 2x - 5\right)}{9x^4 + 30x^2 + 25}$ Apply isw and award this mark once a correct expression is seen	A1
8(b)	Allow full recovery in (b) following ± (a correct numerator) in (a) or following ± (a correct numerator) and an incorrect denominator in (a)	(3)
	$f'(x) = 0 \Rightarrow 30 - 12x - 18x^2 = 0 \Rightarrow -6(3x + 5)(x - 1) = 0 \Rightarrow x = \dots$ Sets their numerator = 0 and attempts to solve 2TQ or 3TQ = 0	M1
	$x = -\frac{5}{3}$, 1 Correct values	A1
	$x = -\frac{5}{3} \Rightarrow y = \frac{6(-\frac{5}{3}) + 2}{3(-\frac{5}{3})^2 + 5}$ Finds the <i>y</i> coordinate of the turning point from the <i>x</i> coordinate for one of their values. Dependent on the previous method mark.	d M1
	$\Rightarrow \left(-\frac{5}{3}, -\frac{3}{5}\right), (1, 1)$ Correct coordinates but allow $x =, y =$ and allow equivalent exact fractions/decimals for $-\frac{5}{3}$ and/or $-\frac{3}{5}$	A1
	3 3	(4)

	T		
8(c)	Either $\left(\frac{1}{2} \times \text{their l},\right)$ or	One correct or correct follow through coordinate and allow	B1ft
	(, their 1+4)	$x = \dots, y = \dots$	
	(1	Both correct or correct follow through coordinates (allow $x =, y =$) but there should	
	$\left(\frac{1}{2} \times \text{their 1, their 1} + 4\right)$	be no other points that have clearly not been discarded unless	B1ft
		their point is clearly indicated as	
		being the maximum.	
0(1)			(2)
8(d)]	$\leq y \leq \frac{2}{5}$	
	M1: For either end of the inequality including the \leq or \geq but allow \leq		
	and/or > for this mark or e.g. max	$x = \frac{2}{5}$, min = $-\frac{3}{5}$ but not just values	M1
	Accept $\frac{2}{5}$ (or equivalent) or follow through on their $-\frac{3}{5}$ (or equivalent)		
	A1: Both ends fully correct with	≤ and ≥ but follow through on their	
	$-\frac{3}{5}$ and allow alternative notation such as		
	$\left[-\frac{3}{5}, \frac{2}{5} \right], -\frac{3}{5} \leqslant \text{Range} \leqslant \frac{2}{5}, \left\{ y : y \right\}$	$\geqslant -\frac{3}{5} \cap y \leqslant \frac{2}{5}$, $y \leqslant \frac{2}{5}$ and $y \geqslant -\frac{3}{5}$	A1ft
	Accept $\frac{2}{5}$ (or equivalent) and follows:	w through on their $-\frac{3}{5}$ (or equivalent)	
	Do not allow <i>x</i> for the range by	at allow g or $g(x)$ but not f or $f(x)$	
			(2)
			[11 marks]

Question Number	Scher	me	Marks
9(a)	$\sin(2x+x) = \sin 2x c$ Attempts to use the identity for $\sin(A+x)$ $Accept \sin(2x+x) = \sin 2x c$ $\sin(x+2x) = \sin 2x c$	B) with $A = 2x$, $B = x$ or vice versa $x \cos x \pm \cos 2x \sin x$ or	M1
	$= 2\sin x \cos x \cos x + \left(1 - 2\sin^2 x\right)\sin x$	Uses the correct double angle identities for $\sin 2x$ and $\cos 2x$. Allow $\sin 2x = \sin x \cos x + \cos x \sin x$ If $\cos 2x = \cos^2 x - \sin^2 x$ is used, then the " $\cos^2 x$ " term must be changed to $1 - \sin^2 x$ later in the solution. Dependent on the first method mark.	dM1
	$= 2\sin x \left(1 - \sin^2 x\right) + \left(1 - 2\sin^2 x\right)\sin x$	Reaches an expression in terms of $\sin x$ only by use of $\cos^2 x = 1 - \sin^2 x$	M1
	$= 3\sin x - 4\sin^3 x$	$\cos \sin 3x = 3\sin x - 4\sin^3 x$ or $\sin 3x = 3\sin x + -4\sin^3 x$	A1
	Note: As this is not a "traditional" id given, do not be overly concerned with e.g. $\cos x^2$ rather than $\cos^2 x$. Generally if all the method marks an $3\sin x - 4\sin^3 x$ is reached	th minor notational errors such as or the odd missing "x". re scored with no clear errors and	
			(4)

Part (b) is hence and so they must use part (a) to score in (b)

9(b)		
7(0)	$\int \sin 3x \cos x dx = \int \left(P \sin x \cos x - Q \sin^3 x \cos x \right) dx$	
	AND one of:	
	$\int P \sin x \cos x dx = k \sin^2 x \text{ or } k \cos^2 x \text{ or } k \cos 2x$	
	or	N/1
	$\int Q\sin^3 x \cos x \mathrm{d}x = k\sin^4 x$	M1
	or	
	$\int Q \sin^3 x \cos x dx = \alpha \cos 2x + \beta \cos 4x$	
	(From $4\sin^3 x \cos x = 2\sin^2 x \sin 2x = (1 - \cos 2x)\sin 2x = \sin 2x - \frac{1}{2}\sin 4x$)	
	Examples:	
	$\bullet = \frac{3}{2}\sin^2 x - \sin^4 x (+c)$	
	_	
	$\bullet -\frac{3}{2}\cos^2 x - \sin^4 x (+c)$	
	$\bullet -\frac{3}{4}\cos 2x - \sin^4 x (+c)$	
	$\bullet = \frac{3}{2}\sin^2 x + \frac{1}{2}\cos 2x - \frac{1}{8}\cos 4x$	A1
	• $-\frac{3}{2}\cos^2 x + \frac{1}{2}\cos 2x - \frac{1}{8}\cos 4x (+c)$	
	• $-\frac{3}{4}\cos 2x + \frac{1}{2}\cos 2x - \frac{1}{8}\cos 4x (+c)$	
	$\bullet -\frac{1}{4}\cos 2x - \frac{1}{8}\cos 4x (+c)$	
	Correct integration	
	E.g. $\left[\frac{3}{2} \sin^2 x - \sin^4 x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{3}{2} \sin^2 \left(\frac{\pi}{2} \right) - \sin^4 \left(\frac{\pi}{2} \right) - \left\{ \frac{3}{2} \sin^2 \left(\frac{\pi}{6} \right) - \sin^4 \left(\frac{\pi}{6} \right) \right\}$	d M1
	Substitutes both $x = \frac{\pi}{2}$ and $x = \frac{\pi}{6}$ and subtracts either way round	
	Dependent upon the previous Method mark.	
	$=\frac{1}{2} - \frac{5}{16} = \frac{3}{16}$ $\frac{3}{16}$ or 0.1875 (or exact equivalent)	A1
		(4)

Alternative 1 for (b):	
$\int \sin 3x \cos x dx = \int \left(P \sin x - Q \sin^3 x \right) \cos x dx$ $u = \sin x \Rightarrow \frac{du}{dx} = \cos x \Rightarrow du = \cos x dx$	
$\int \left(P\sin x - Q\sin^3 x\right)\cos x dx = \int \left(Pu - Qu^3\right) du$	M1
AND one of:	
$\int Pu \mathrm{d}u = ku^2 \text{ or } \int Qu^3 \mathrm{d}u = ku^4$	
$= \frac{3}{2}u^2 - u^4(+c)$ Correct integration	A1
$\left[\frac{3}{2}u^2 - u^4\right]_{\frac{1}{2}}^{1} = \frac{3}{2} - 1 - \left(\frac{3}{8} - \frac{1}{16}\right)$	
Substitutes both $x = 1$ and $x = \frac{1}{2}$ and subtracts or replaces u with $\sin x$ and	d M1
substitutes both $x = \frac{\pi}{2}$ and $x = \frac{\pi}{6}$ and subtracts either way round	
Dependent upon the previous Method mark.	
$=\frac{1}{2} - \frac{5}{16} = \frac{3}{16}$ $\frac{3}{16}$ or 0.1875 (or exact equivalent)	A1

Alternative 2 for (b):	
$\int \sin 3x \cos x dx = \int \left(P \sin x - Q \sin^3 x\right) \cos x dx$ $= \left(P \sin x - Q \sin^3 x\right) \sin x - \int \left(P \cos x - 3Q \sin^2 x \cos x\right) \sin x du$ Parts in the correct direction AND one of: $\int P \sin x \cos x dx = k \sin^2 x \text{ or } k \cos^2 x \text{ or } k \cos 2x$ or $\int Q \sin^3 x \cos x dx = k \sin^4 x$ or $\int Q \sin^3 x \cos x dx = \alpha \cos 2x + \beta \cos 4x$	M1
$= 3\sin^2 x - 4\sin^4 x - \frac{3}{2}\sin^2 x + 3\sin^4 x (+c)$	A1
Correct integration	
E.g. $\left[\frac{3}{2}\sin^2 x - \sin^4 x\right]^{\frac{\pi}{2}} = \frac{3}{2}\sin^2\left(\frac{\pi}{2}\right) - \sin^4\left(\frac{\pi}{2}\right) - \left\{\frac{3}{2}\sin^2\left(\frac{\pi}{6}\right) - \sin^4\left(\frac{\pi}{6}\right)\right\}$ Substitutes both $x = \frac{\pi}{2}$ and $x = \frac{\pi}{6}$ and subtracts either way round Dependent upon the previous Method mark.	dM1
$= \frac{1}{2} - \frac{5}{16} = \frac{3}{16}$ $= \frac{3}{16} \text{ or } 0.1875 \text{ (or exact equivalent)}$	A1
$-\frac{1}{2} - \frac{1}{16} - \frac{1}{16}$	Λ1

Question	Scho	eme	Marks
Number		1 1	
10(a)	$\frac{1}{(2+3x)^3} = (2+3x)^{-3} = \frac{1}{8} \left(1 + \frac{3}{2}x\right)^{-3}$	Takes out a factor of 2^{-3} or $\frac{1}{8}$ or $\frac{1}{2^3}$ (or 0.125)	В1
	$\left(1 + \frac{3}{2}x\right)^{-3} = 1 + \left(-3\right)\left(\frac{3}{2}x\right)^{-3}$	$\left(x\right) + \frac{(-3)(-4)}{2!} \left(\frac{3}{2}x\right)^2 + \dots$	
	M1: Expands $(1+kx)^{-3}$, $k \neq \pm 1$ with the	correct structure for the second or third	
	term e.g. $(-3)kx$ or $\frac{(-3)(-4)}{2}(kx)^2$ where	ith or without the bracket around the kx	M1
	Do not allow e.g. $\begin{pmatrix} -3\\1 \end{pmatrix}$, $\begin{pmatrix} -3\\2 \end{pmatrix}$ for	the coefficients unless the correct	
	calculations/values are im	plied by subsequent work	
		Correct and unsimplified binomial	
	$1 + \left(-3\right) \left(\frac{3}{2}x\right) + \frac{(-3)(-4)}{2!} \left(\frac{3}{2}x\right)^{2} + \dots$	expansion excluding the $\left\{\frac{1}{8}\right\}$	A1
	$=\frac{1}{8}-\frac{9}{16}x:+\frac{27}{16}x^2$	$\frac{1}{8} - \frac{9}{16}x$ $\frac{27}{16}x^2$	A1
	8 16 16	$\frac{27}{16}x^2$	A1
	Special Case – if all the working is cor	rect but the brackets not removed e.g.	
	$= \frac{1}{8} \left(1 - \frac{9}{2} \right)$	_	
	Score B1M	I1A1A1A0	
			(5)
(a) Way 2	$(2+3x)^{-3} = 2^{-3} + (-3) \times 2^{-4} \times$	$(3x) + \frac{(-3)(-4)}{2} \times 2^{-5} \times (3x)^2$	B1
	B1: For fir	est term 2 ⁻³	M1
	M1: Correct structure for		
	A1: Correct and unsimple	ified binomial expansion	A1
	$-\frac{1}{r} - \frac{9}{r} + \frac{27}{r^2}$	$\frac{1}{8} - \frac{9}{16}x$	A1
	$= \frac{1}{8} - \frac{9}{16}x : +\frac{27}{16}x^2$	$\frac{27}{16}x^2$	A1

10(1)(2)	0.5	T	I
10(b)(i)	$4 \times "\frac{27}{16}" = \dots$	$4 \times \text{Their } \frac{27}{16}$	M1
	Or may start again to ex	spand including their $\frac{1}{8}$:	
	$(2+6x)^{-3} = {1 \over 8}(1+3x)^{-3} = {1 \over 8}(1+3x)^{-3}$	$+(-3)(3x)+\frac{(-3)(-4)}{2!}(3x)^2+\dots$	
	$(2+6x)^{-3} = 2^{-3} + (-3) \times 2^{-4} \times 2^{-4}$	or $x(6x) + \frac{(-3)(-4)}{2} \times 2^{-5} \times (6x)^2$	
	Or uses their (possibly incorrect) expa	ansion from (a) with $3x$ instead of $\frac{3}{2}x$	
	And evaluates the coef	fficient of their x² term	
	27	Allow exact equivalents e.g. 6.75, $6\frac{3}{4}$.	
	$\frac{27}{4}$	Must be seen identified as the required term and not just part of an expansion.	A1
(b)(ii)	$4 \times "\frac{27}{16}" - \left(" - \frac{9}{16}"\right) = \dots$	$4 \times \text{Their } \frac{27}{16} \pm \text{Their } -\frac{9}{16} \dots$	M1
		expansion, this mark can score as long	
	as the x^2 term	s are collected	
		Allow exact equivalents e.g. 7.3125,	
	$\frac{117}{16}$	$7\frac{5}{16}$. Must be seen identified as the	A1
	10	required term and not just part of an expansion.	
	If the x^2 s are included with the coefficient	Case: tts then penalise this once only and at the urrence.	(4)
			[9 marks]

Question Number	Scheme		Marks
11(a)	$\frac{9}{t^2(t-3)} = \frac{A}{t} + \frac{B}{t^2} + \frac{C}{t-3}$		
	$9 = At(t-3) + B(t-3) + Ct^{2}$	A correct equation. (May be implied)	B1
	$t=3 \Rightarrow C=$ or $t=0 \Rightarrow B=$ or $9 = At^2 - 3At + Bt - 3B + Ct^2$ $-3B=9 \Rightarrow B=$	Finds one constant by either substitution or use of simultaneous equations	M1
	A = -1, B = -3, C = 1	Correct values or correct fractions	A1
(b)	In mout (b) condone the use of	fu wathan than t and log for la	(3)
(b)	In part (b), condone the use of	Allow for	
	$\int -\frac{1}{t} + \frac{1}{t-3} dt = -\ln t + \ln(t-3)$	$\int \frac{A}{t} + \frac{C}{t-3} dt = \alpha \ln t + \beta \ln(t-3)$	M1
	$\int -\frac{3}{t^2} \mathrm{d}t = \frac{3}{t}$	Allow for $\int \frac{B}{t^2} dt = \pm \frac{\alpha}{t}$	M1
	$\int \frac{9}{t^2(t-3)} dt = \int \left(-\frac{1}{t} - \frac{3}{t^2} + \frac{1}{t-3}\right) dt$ Correct integration (possibly unsimplified) for their respectively. $\int \left(\frac{A}{t} + \frac{B}{t^2} + \frac{C}{t-3}\right) dt = \int \left(\frac{A}{t} + \frac{B}{t-3} + \frac{C}{t-3}\right) dt = \int \left(\frac{A}{t} + \frac{B}{t-3}\right) dt$	fied) or correct follow through (possibly non-zero A , B and C e.g.	A1ft
	=	$\ln 12 + \frac{3}{12} + \ln 9$ $-\left(-\ln 4 + \frac{3}{4} + \ln 1\right)$ anged" function and subtracting either mplied by their values	M1
		$\left(\frac{\times 4}{2}\right) - \frac{1}{2}$	
	Must be <u>fully correct</u> log work for the single logarithm. Note that some ca	revious method marks. neir values to combine the ln's into a andidates combine their logs before ore then for fully correct log work.	ddd M1
	$=\ln(3)-\frac{1}{2}$	Cso. Condone lack of brackets. Allow equivalents for the $\frac{1}{2}$ e.g. 0.5 or $\frac{2}{4}$	A1
			(6

		1
11(c)	$x = 2\ln(t-3) \Rightarrow \frac{dx}{dt} = \frac{2}{t-3}$ Correct expression for $\frac{dx}{dt}$ (may be implied)	B1 M1 on ePEN
	$V = \int \pi y^2 \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \int \pi \times \frac{36}{t^2} \times \frac{2}{(t-3)} \mathrm{d}t$	
	Uses $(\pi \times) \int y^2 \frac{dx}{dt} dt = \int \left(\frac{6}{t}\right)^2 \times their \frac{2}{(t-3)} dt$	M1
	Condone missing brackets, missing π and missing dt	
	$=8\pi\times I$	
	Correct volume in terms of π . Allow $k = 8\pi$.	
	For this mark to be awarded there must be reference to the limits at some	A1
	stage e.g. shows $x = 0 \Rightarrow t = 4$ and $x = 2 \ln 9 \Rightarrow t = 12$ or starts with an	
	integral with limits 0 and 2ln9 and changes to limits 4 and 12	
	Ignore subsequent attempts to evaluate the integral but the A1 can be	
	awarded for e.g. $V = 8\pi \left(\ln 3 - \frac{1}{2} \right)$ provided the above conditions for the	
	A1 are also met.	
		(3)
		[12 marks]

Question Number	Sch	neme	Marks
12(a)	$\overrightarrow{AB} = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$		
	For subtracting either way around. A	except $\pm ((3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) - (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}))$	M1
		out of three terms correct	
	, ,	$\overrightarrow{AB} = (\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$ or the equivalent	
		column vector but not the	
	$\overrightarrow{AB} = (\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	coordinates and not $\begin{pmatrix} \mathbf{i} \\ 5\mathbf{j} \\ 7\mathbf{k} \end{pmatrix}$	A1
			(2)
(b)	Evans 1	Correct method for <i>l</i> . Needs a point	M1
	Examples: $\mathbf{r} = (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) + \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	on l (usually A or B) \pm " λ " their (a) or an attempt at $\pm \overrightarrow{AB}$.	M1
	$r = (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) + \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$ $r = (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) - \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	$r = \overrightarrow{OA} \pm \lambda (\overrightarrow{AB}) \text{ or } r = \overrightarrow{OB} \pm \lambda (\overrightarrow{AB})$	
	$r = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) + \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$ $r = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) + \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	or equivalent e.g. column vectors but	
	(-) (-)	not with i, j, k within the columns	A1
	$r = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) - \lambda(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	as above. A fully correct equation	
		including "r ="	(2)
(c)	$\overrightarrow{AC} = (2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) - (2\mathbf{i}$	$(-3\mathbf{j} - 2\mathbf{k}) = (0\mathbf{i} + 7\mathbf{j} - 1\mathbf{k})$	(-)
	For using vector \overrightarrow{OA} and \overrightarrow{OC} and subtracting either way around		M1
	$\overrightarrow{AC} = \pm \left((2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}) - (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \right)$		M1
	It may be implied by two	out of three terms correct	
	Attempts $\overrightarrow{AB}.\overrightarrow{AC} = AB AC \cot$	$\cos\theta \Rightarrow 0 + 35 - 7 = \sqrt{75}\sqrt{50}\cos\theta$	
	For an attempt at \overline{A}	$\overrightarrow{B}.\overrightarrow{AC} = AB AC \cos\theta$	
	with "their" \overline{AB} or \overline{BA}	and "their" \overrightarrow{AC} or \overrightarrow{CA}	M1
		or cosine rule with	IVII
	$\cos\theta = \frac{\left AB\right ^2 + \left AC\right ^2}{2\left AB\right \left A\right }$	$\frac{- CB ^2}{ C } = \frac{75 + 50 - 69}{2\sqrt{75}\sqrt{50}}$	
		or $\cos \theta = -\frac{28}{\sqrt{75}\sqrt{50}} \left(\text{or } -\frac{14\sqrt{6}}{75} \right)$	A1
		θ (allow awrt \pm 0.457)	
	If the answer of $\theta = 117.2^{\circ}$ is obtain	2.8° Cso ed the minimum we would expect for $80^{\circ}-117.2^{\circ}=62.8^{\circ}$	A1*
	mis inta naix is i	00 11/12 0210	(4)

12(d)	$Area = \frac{1}{2}their AB \times their AC \sin(62.8^{\circ})$	
	$= \frac{1}{2} \mathbf{i} + 5\mathbf{j} + 7\mathbf{k} 7\mathbf{j} - \mathbf{k} \sin(62.8^\circ) = \frac{1}{2} \sqrt{1^2 + 5^2 + 7^2} \sqrt{7^2 + 1^2} \sin(62.8^\circ)$	M1
	$\frac{1}{2}\sqrt{75}\sqrt{50}\sin(62.8^\circ)$	
	= 27.2 Allow awrt 27.2	A1
	Correct answer only scores both marks	
		(2)
(e)	Method of finding one coordinate or position vector of point D . $(\overrightarrow{OD} =)(2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \pm 2 \times (\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	or	
	$(\overrightarrow{OD} =)(3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) + (\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	M1
	or (
	$(\overrightarrow{OD} =)(3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) - 3 \times (\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	$\overrightarrow{OD} = (4\mathbf{i} + 7\mathbf{j} + 12\mathbf{k}) \text{ and } (0\mathbf{i} - 13\mathbf{j} - 16\mathbf{k})$	
	A1: One position vector or one set of coordinates correct	A1 A1
	A1: Both position vectors correct	
	Do not isw and mark their final answers	(2)
	Note that there are many ways of answering part (e) which are more	(3)
	convoluted, however, the M mark should be awarded as follows:	
	$\overrightarrow{OD} = (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) + \alpha(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	or	
	$\overrightarrow{OD} = (2\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) - \alpha(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	Where $1.99 < \alpha < 2.01$	
	0r	
	$\overrightarrow{OD} = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) + \beta(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	Where $0.99 < \beta < 1.01$	
	$\overrightarrow{OD} = (3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) - \gamma(\mathbf{i} + 5\mathbf{j} + 7\mathbf{k})$	
	· · · · · · · · · · · · · · · · · · ·	
	Where $2.99 < \gamma < 3.01$	[12 maulzal
		[13 marks]

Number 13 (a)	$h = 0.25$ $Area = \frac{0.25}{2} \left\{ 8.32 + 99.8 + 2 \times (21.4 + 40.6 + 66.6) \right\}$ $Correct trapezium rule structure e.g.$ $\frac{h}{2} \left\{ \text{Correct } y\text{-value structure} \right\}$ $Or may see separate trapezia:$ $\frac{0.25}{2} (8.32 + 21.4) + \frac{0.25}{2} (21.4 + 40.6) + \frac{0.25}{2} (40.6 + 66.6) + \frac{0.25}{2} (66.6 + 99.8)$ $Awrt 46$ $A \text{ correct answer of awrt } 46 \text{ with no incorrect working seen can score full marks. Note that calculator gives } 45.1028$ $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$ $such as x = u^{\frac{1}{2}} \Rightarrow \frac{dx}{du} = \frac{1}{2}u^{-\frac{1}{2}}$	B1 M1 A1 (3)
	Correct trapezium rule structure e.g. $\frac{h}{2} \{ \text{Correct } y \text{-value structure} \}$ Or may see separate trapezia: $\frac{0.25}{2} (8.32 + 21.4) + \frac{0.25}{2} (21.4 + 40.6) + \frac{0.25}{2} (40.6 + 66.6) + \frac{0.25}{2} (66.6 + 99.8)$ Awrt 46 A correct answer of awrt 46 with no incorrect working seen can score full marks. Note that calculator gives 45.1028 $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$	A1 (3)
	Or may see separate trapezia: $\frac{0.25}{2}(8.32+21.4) + \frac{0.25}{2}(21.4+40.6) + \frac{0.25}{2}(40.6+66.6) + \frac{0.25}{2}(66.6+99.8)$ Awrt 46 A correct answer of awrt 46 with no incorrect working seen can score full marks. Note that calculator gives 45.1028 $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$	A1 (3)
	$\frac{0.25}{2}(8.32+21.4) + \frac{0.25}{2}(21.4+40.6) + \frac{0.25}{2}(40.6+66.6) + \frac{0.25}{2}(66.6+99.8)$ Awrt 46 A correct answer of awrt 46 with no incorrect working seen can score full marks. Note that calculator gives 45.1028 $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$	(3)
	A correct answer of awrt 46 with no incorrect working seen can score full marks. Note that calculator gives 45.1028 $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$	(3)
	marks. Note that calculator gives 45.1028 $u = x^2 \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$, ,
(b)	$u - v^2 \rightarrow u^2 - 2v$, ,
(b)	$u - v^2 \rightarrow u^2 - 2v$	B1
	du 2	
	Area $R = \int 12x^2 \ln(2x^2) dx = \int 12u \ln(2u) \frac{1}{2} u^{-\frac{1}{2}} du$ or $\int 12x^2 \ln(2x^2) dx = \int 12u \ln(2u) \frac{du}{2x}$ or $\int 12x^2 \ln(2x^2) dx = \int 12x^2 \ln(2u) \frac{du}{2x}$ or $\int 12x^2 \ln(2x^2) dx = \int 12x^2 \ln(2u) \frac{1}{2} u^{-\frac{1}{2}} du$ Uses the substitution and replaces at least the "dx" in terms of du and changes the $\ln(2x^2)$ to $\ln(2u)$	M1
1	$= \int_{1}^{4} 6u^{\frac{1}{2}} \ln(2u) du^{*}$ Completes to obtain the printed answer. There must be a reference to the limits e.g. clear evidence of the change of limits or with the 1 and 2 in the <i>x</i> integral becoming 1 and 4 in the <i>u</i> integral. Allow working to appear with e.g. integral signs missing but if limits are attached at any stage they must correspond with the "dx" or the "du" present at that stage. At some point, the $12x^{2}$ and the dx must appear in terms of the same variable e.g. as $\frac{12x^{2}}{2x}$ or as $\frac{12u}{2\sqrt{u}}$.	A1*

13(b) Way 2	$u = x^{2} \Rightarrow \frac{du}{dx} = 2x$ $u = x^{2} \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$ $u = x^{2} \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$ $u = x^{2} \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$ $u = x^{2} \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$ $u = x^{2} \Rightarrow \frac{du}{dx} = 2x \text{ or equivalent}$	B1
	Area $R = \int 6u^{\frac{1}{2}} \ln(2u) du = \int 6x \ln(2x^2) 2x dx$ or	
	$\int 6u^{\frac{1}{2}} \ln(2u) du = \int 6u^{\frac{1}{2}} \ln(2x^2) 2x dx$ or	
	$\int 6u^{\frac{1}{2}} \ln(2u) du = \int 6u^{\frac{1}{2}} \ln(2x^2) 2\sqrt{u} dx$ or	M1
	$\int 6u^{\frac{1}{2}} \ln(2u) du = \int 6x \ln(2x^2) 2\sqrt{u} dx$ Uses the substitution and replaces at least the "du" in terms of dx and	
	changes the $ln(u)$ to $ln(2x^2)$	
	$= \int_{1}^{2} 12x^{2} \ln(2x^{2}) dx^{*}$ Which is the area of R.	
	Completes to obtain the printed answer with a conclusion. There must be a reference to the limits e.g. clear evidence of the change of limits or with the 1 and 4 in the u integral becoming 1 and 2 in the x integral. Allow working to appear with e.g. integral signs missing but if limits are attached at any stage they must correspond with the "dx" or the "du"	A1*
	present at that stage. At some point, the $6u^{\frac{1}{2}}$ and the du must appear in	
1	terms of the same variable e.g. as $6x \times 2x$ or as $6u^{\frac{1}{2}} \times 2\sqrt{u}$.	

		1	
13(c)	$\int 6u^{\frac{1}{2}} \ln 2u du = 4u^{\frac{3}{2}} \ln 2u - \int 4u^{\frac{3}{2}} \times \frac{1}{u} du$		
	M1: Integrates by parts the correct way around achieving		
	$Pu^{\frac{3}{2}}\ln 2u - \int Qu^{\frac{3}{2}} \times \frac{1}{u} du$		
	A1: $4u^{\frac{3}{2}} \ln 2u - \int 4u^{\frac{3}{2}} \times \frac{1}{u} du$ or exact equivalent	M1A1	
	or if the "6" is omitted allow		
	$\frac{2}{3}u^{\frac{3}{2}}\ln 2u - \int \frac{2}{3}u^{\frac{3}{2}} \times \frac{1}{u} du \text{ or exact equivalent}$ $= 4u^{\frac{3}{2}}\ln 2u - \frac{8}{3}u^{\frac{3}{2}}$		
	$=4u^{\frac{3}{2}}\ln 2u - \frac{8}{3}u^{\frac{3}{2}}$		
	or if the "6" is omitted allow	A1	
	$= \frac{2}{3}u^{\frac{3}{2}}\ln 2u - \frac{4}{9}u^{\frac{3}{2}}$		
	Area = $\left[4u^{\frac{3}{2}}\ln 2u - \frac{8}{3}u^{\frac{3}{2}}\right]_{1}^{4} = \left(32\ln 8 - \frac{64}{3}\right) - \left(4\ln 2 - \frac{8}{3}\right)$	d M1	
	Dependent upon the previous M . It is scored for putting in the limits of 4 and 1 and subtracting either way around. Alternatively they could use the limits of 1 and 2 with a substituted function in x.	U IVI I	
	$= 96 \ln 2 - 4 \ln 2 - \frac{64}{3} + \frac{8}{3} = \alpha \ln 2 + \dots$		
	For correct log work on their ln8 term and combining correctly with ln2	M1	
	term to obtain a single ln2 term having substituted into an integrated function.		
	$= -\frac{56}{3} + 92 \ln 2 \left(\text{ or } 92 \ln 2 - \frac{56}{3} \right) \qquad 92 \ln 2 - \frac{56}{3} \text{ or } -\frac{56}{3} + 92 \ln 2$	A1	
		(6)	
		[12 marks]	

13(c)	Alternative in te	erms of x:	
	$\int 12x^2 \ln(2x^2) dx = \frac{12x^3}{3} \ln(2x^2) dx = \frac{12x^3}{3} \ln(2x^2) dx$	$(2x^2) - \int \frac{12x^3}{3} \times \frac{4x}{2x^2} \mathrm{d}x$	
	M1: Integrates by parts the corre	ect way around achieving	
	$Px^{3}\ln\left(2x^{2}\right)-\int Q$	$Qx^3 \times \frac{1}{x} dx$	N/1 A 1
	A1: $\frac{12x^3}{3}\ln(2x^2) - \int \frac{12x^3}{3} \times \frac{4x^3}{2x^3}$	$\frac{x}{x^2}$ dx or exact equivalent	M1A1
	or if the "12" is on		
	$\frac{x^3}{3}\ln(2x^2) - \int \frac{x^3}{3} \times \frac{4x}{2x^2} dx$	or exact equivalent	
	$=4x^3\ln(2x^2)$	$\left(-\frac{8}{3}x^{3}\right)$	
	or if the "12" is omitted allow		A1
	$=\frac{1}{3}x^3\ln\left(2x^2\right)$	$\left(-\frac{2}{9}x^{3}\right)$	
	Area = $\left[4x^3 \ln(2x^2) - \frac{8}{3}x^3\right]_1^2 = \left(\frac{3}{3}x^3\right)_1^2 = \left(\frac{3}$	$32 \ln 8 - \frac{64}{3} - \left(4 \ln 2 - \frac{8}{3}\right)$	d M1
	Dependent upon the previous M . It is so and 1 and subtracting either way around.	1 0	
	$= 96 \ln 2 - 4 \ln 2 - \frac{64}{3} + \frac{8}{3}$		
	For correct log work on the ln8 term and combining correctly with ln2 term to obtain a single ln2 term having substituted into an integrated		M1
	function.		
	$= 92 \ln 2 - \frac{56}{3}$ 92	$2\ln 2 - \frac{56}{3}$ CSO	A1

Question Number	Scheme		Marks
14(a)	Allow e ¹ for		
	9 or 3+e	For sight of either intercept 9 (not $10-e^0$) or $3+e$ or $3+e^1$ or $3+e^{0+1}$	M1
	Distance $PQ = 6 - e$	6-e (Not 9-(3+e))	A1
			(2)
(b)	Sets $3 + e^{x+1} = 10 - e^x$	Equates the 2 curves	M1
	$e^x(e+1)=7$	Collects exponential terms and takes out a factor of e ^x with correct index work.	M1
	$x = \ln\left(\frac{7}{1+e}\right) \text{ or } \ln\frac{7}{1+e}$	Correct x-coordinate	A1
	· ·	$\left(\frac{7}{e}\right)$ in $y = 10 - e^x \Rightarrow y =$	ddM1
		pon both M's.	
	It is for substituting their value of	of x into either equation to find y	
		$R = \left(\ln\left(\frac{7}{1+e}\right), \frac{3+10e}{1+e}\right) \text{ or }$	
	$R = \left(\ln\left(\frac{7}{1+e}\right), \frac{3+10e}{1+e}\right)$	equivalent such as $x = \ln\left(\frac{7}{1+e}\right)$, $y = 10 - \frac{7}{1+e}$ or	A1
		$y = 3 + \frac{7e}{1+e}$ but not $y = 10 - e^{\ln \frac{7}{1+e}}$	
			(5)
(b) Way 2		$= \ln(10 - y) \Rightarrow y = 3 + e^{1 + \ln(10 - y)}$ 2 and substitutes into equation 1	M1
		Uses correct index work to eliminate the "ln"	M1
	$\Rightarrow y = \frac{10e + 3}{1 + e} \left(\text{ or } 10 - \frac{7}{1 + e} \right)$	Correct y-coordinate.	A1
	or $y = 3 + \frac{7e}{1 + e}$	Not $y = 10 - e^{\ln \frac{7}{1 + e}}$	
	$x = \ln(10 - y) = \ln(10 - \frac{10e + 3}{1 + e})$	Dependent upon both M's. It is for substituting their value of y into either equation to find x. Dependent upon both M's.	dd M1
	$R = \left(\ln\left(\frac{7}{1+e}\right), \frac{3+10e}{1+e}\right)$	$R = \left(\ln\left(\frac{7}{1+e}\right), \frac{3+10e}{1+e}\right) \text{ or}$ equivalent such as $x = \ln\left(\frac{7}{1+e}\right), \ y = 10 - \frac{7}{1+e}$	A1
		Allow $x = \ln\left(10 - \frac{10e + 3}{1 + e}\right)$	

14(b) Way 3	$y = 3 + e^{x+1} \Rightarrow y - 3 = e^{x+1} \Rightarrow$ Makes e^x the subject of equation	M1		
	$10 - y = \frac{y - 3}{e} \Rightarrow 10e - ye = y - 3 \Rightarrow y(1 + e) = 10e + 3$ Uses correct algebra and factorises y		M1	
	$\Rightarrow y = \frac{10e + 3}{1 + e} \left(\text{ or } 10 - \frac{7}{1 + e} \right)$ or $y = 3 + \frac{7e}{1 + e}$	Correct y-coordinate	A1	
	Then as above.			
(b) Way 4	$y = 10 - e^{x} \Rightarrow e^{x} = 10 - y \Rightarrow x = \ln(10 - y)$ $y = 3 + e^{x+1} \Rightarrow e^{x+1} = y - 3 \Rightarrow x + 1 = \ln(y - 3)$ $y = 3 + e^{x+1} \Rightarrow e^{x+1} = y - 3 \Rightarrow \ln(10 - y) = \ln(y - 3) - 1$		M1	
	Makes x and $x + 1$ the			
	$\Rightarrow \frac{y-3}{(10-y)} = e$	Uses correct work to eliminate the "ln's"	M1	
	$\Rightarrow y = \frac{10e + 3}{1 + e} \left(\text{ or } 10 - \frac{7}{1 + e} \right)$ or $y = 3 + \frac{7e}{1 + e}$	Correct y-coordinate	A1	
	Then as			
			[7 marks]	

If the candidate works in decimals throughout then the <u>method</u> marks are still available if no exact values are seen. NB: 3 + e = 5.71..., 6 - e = 3.28..., $\ln\left(\frac{7}{1+e}\right) = 0.632...$, $\frac{10e+3}{1+e} = 8.11...$