

# Mark Scheme (Results)

## October 2018

Pearson Edexcel International Advanced Level in Core Mathematics C12 (WMA01/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2018 Publications Code WMA01\_01\_1810\_MS All the material in this publication is copyright © Pearson Education Ltd 2018 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## **EDEXCEL IAL MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt[4]{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

#### General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$ , where |pq| = |c|, leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

#### 2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving  $x^2 + bx + c = 0$   $(x \pm \frac{b}{2})^2 \pm q \pm c$ ,  $q \neq 0$ , leading to x = ...

#### Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### Use of a formula

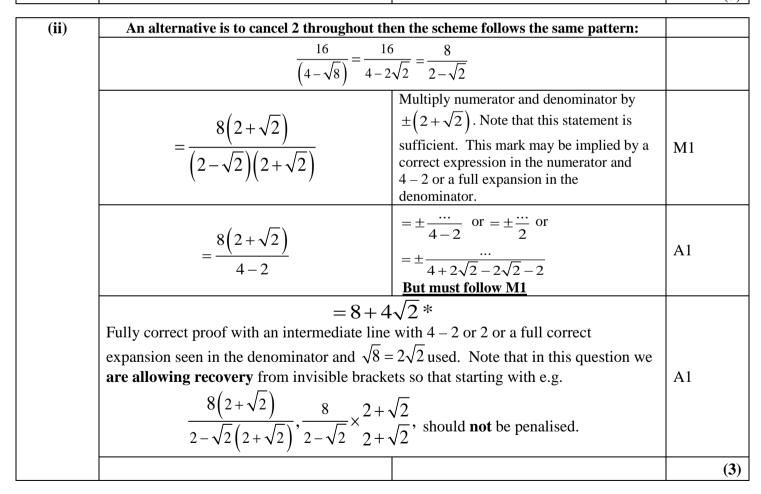
Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

#### Normal marking procedure is as follows:

**Method mark** for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### **Exact answers**


Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

#### Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

| Question<br>Number | Scheme                                                                                                                                           | Notes                                                                                                                 | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------|
| 1(i)<br>Way 1      | $125\sqrt{5} = 5^3 \times 5^{\frac{1}{2}} = 5^{3+\frac{1}{2}}$                                                                                   | Writes $125\sqrt{5} = 5^p \times 5^q$ with at least one<br>of $p = 3$ or $q = \frac{1}{2}$ and adds their $p$ and $q$ | M1    |
|                    | $=5^{3\frac{1}{2}}$ or $a=3\frac{1}{2}$ or 3.5                                                                                                   | Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$                                                              | A1    |
|                    | Note that some candidates are treating                                                                                                           | ing the 125 as $\sqrt{125}$ and then writing                                                                          |       |
|                    | $\sqrt{125}$ as $5 \times 5^{\frac{1}{2}}$ which<br>This is M0 as they are not w                                                                 |                                                                                                                       |       |
| -                  | This is who as they are not w                                                                                                                    |                                                                                                                       | (2)   |
| Way 2              | $125\sqrt{5} = 5^a \Longrightarrow \log_5 125\sqrt{5} = \log_5 5^a$                                                                              | Takes logs base 5 of both sides and uses<br>power rule i.e. $\log_5 5^a = a \log_5 5$ or                              | M1    |
|                    | $\Rightarrow \log_5 125\sqrt{5} = a \log_5 5$                                                                                                    | $\log_5 5^a = a$                                                                                                      |       |
|                    | $=5^{\frac{3}{2}}$ or $a=3\frac{1}{2}$ or $3.5$                                                                                                  | Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$                                                              | A1    |
| -                  |                                                                                                                                                  |                                                                                                                       | (2)   |
| Way 3              | $125\sqrt{5} = 5^a \Longrightarrow \log 125\sqrt{5} = \log 5^a$                                                                                  | Takes logs <b>to the same base</b> of both                                                                            | M1    |
|                    | $\Rightarrow \log 125\sqrt{5} = a \log 5$                                                                                                        | sides and uses the power rule correctly.                                                                              | 1111  |
|                    | $=5^{\frac{3}{2}}$ or $a=3\frac{1}{2}$ or $3.5$                                                                                                  | Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$                                                              | A1    |
|                    |                                                                                                                                                  |                                                                                                                       | (2)   |
| Way 4              | $125\sqrt{5} = 5^{a} \Longrightarrow \left(125\sqrt{5}\right)^{2} = \left(5^{a}\right)^{2}$ $125\sqrt{5} = 5^{a} \Longrightarrow 78125 = 5^{2a}$ | Squares both sides and takes log base 5<br>or takes logs in a different base and uses                                 | M1    |
|                    | $2a = \log_5 78125 \text{ or } \log 78125 = 2a \log 5$                                                                                           | the power rule correctly                                                                                              |       |
|                    | $=5^{\frac{3}{2}}$ or $a = 3\frac{1}{2}$ or $3.5$                                                                                                | Sight of $a = 3\frac{1}{2}$ or 3.5 or $5^{3\frac{1}{2}}$                                                              | A1    |
|                    | -                                                                                                                                                |                                                                                                                       | (2)   |
|                    |                                                                                                                                                  |                                                                                                                       |       |
|                    | Correct answer in (i) with no inco<br>Note that in (i) if they take log                                                                          | 0                                                                                                                     |       |
|                    | Note that in (1) if they take $\log 125\sqrt{5} = 5^a \Longrightarrow \log 12$                                                                   |                                                                                                                       |       |
|                    | $125\sqrt{5} = 5^{-1} \Longrightarrow 10g12$ <b>this scor</b>                                                                                    | 6 6                                                                                                                   |       |
|                    |                                                                                                                                                  | CD 1V1U.                                                                                                              |       |

| (ii) | $\frac{16\left(4+\sqrt{8}\right)}{\left(4-\sqrt{8}\right)\left(4+\sqrt{8}\right)}$                                                                                                                                                                                                                                                         | Multiply numerator and denominator by<br>$\pm (4 + \sqrt{8})$ or equivalent e.g. $\pm (4 + 2\sqrt{2})$<br>Note that this statement is sufficient. This<br>mark may be implied by a correct<br>expression in the numerator and 16 – 8 or a<br>full expansion in the denominator. | M1  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | $=\frac{16(4+2\sqrt{2})}{16-8}$                                                                                                                                                                                                                                                                                                            | $=\pm\frac{\dots}{16-8} \text{ or } =\pm\frac{\dots}{8} \text{ or}$ $=\pm\frac{\dots}{16+4\sqrt{8}-4\sqrt{8}-8}$ <u>But must follow M1</u>                                                                                                                                      | A1  |
|      | = 8 + 4<br>Fully correct proof with an intermediate line<br>expansion seen in the denominator and $\sqrt{8}$ =<br><b>explicitly stated</b> ). Note that in this question<br>brackets so that starting with e.g.<br>$\frac{16(4 + \sqrt{8})}{4 - \sqrt{8}(4 + \sqrt{8})}, \frac{16}{4 - \sqrt{8}} \times \frac{4 + \sqrt{8}}{4 + \sqrt{8}}$ | with $16 - 8$ or 8 or a full correct<br>= $2\sqrt{2}$ used ( <b>does not need to be</b><br>we <b>are allowing recovery</b> from invisible                                                                                                                                       | A1  |
|      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | (3) |



| Alternative for (ii)                                      |                                                                                                        |         |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|
| $\left(8+4\sqrt{2}\right)\left(4-\sqrt{8}\right)=\dots$   | Attempt to expand to at least 3 terms                                                                  | M1      |
| $= 32 - 8\sqrt{8} + 16\sqrt{2} - 4\sqrt{16}$              | All terms correct                                                                                      | A1      |
| $= 16 \therefore \frac{16}{4 - \sqrt{8}} = 8 + 4\sqrt{2}$ | Obtains 16 correctly with a conclusion<br>which could be as shown or allow just a<br>tick, #, QED etc. | A1      |
|                                                           |                                                                                                        | Total 5 |

| Question<br>Number | Scheme                                                                                                                      | Notes                                                                                                                                                                                                                                                                                                                     | Marks       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2                  | $x + y = 5 \qquad x^2 + x + y^2 = 51$                                                                                       |                                                                                                                                                                                                                                                                                                                           |             |
|                    | $y = 5 - x \Rightarrow x^{2} + x + (5 - x)^{2} = 51$<br>or<br>$x = 5 - y \Rightarrow (5 - y)^{2} + (5 - y) + y^{2} = 51$    | Attempts to rearrange the linear<br>equation to $y =$ or $x =$ and attempts<br>to fully substitute into the second<br>equation.                                                                                                                                                                                           | M1          |
|                    | $2x^2 - 9x - 26 = 0$<br>or                                                                                                  | Collect terms together to produce a 2 or<br>3 term quadratic expression = 0.<br>The '= 0' may be implied by later<br>work.                                                                                                                                                                                                | M1          |
|                    | $2y^2 - 11y - 21 = 0$                                                                                                       | Correct quadratic equation in <i>x</i> or <i>y</i>                                                                                                                                                                                                                                                                        | A1          |
|                    | $(2x-13)(x+2) = 0 \Longrightarrow x = \dots$<br>or<br>$(2y+3)(y-7) = 0 \Longrightarrow y = \dots$                           | Attempt to factorise and solve or<br>complete the square and solve or uses a<br>correct quadratic formula <b>for a 3 term</b><br><b>quadratic and obtains at least one</b><br><b>value of</b> <i>x</i> <b>or</b> <i>y</i> <b>. Dependent on both</b><br><b>previous method marks.</b><br>(May be implied by their values) | <b>d</b> M1 |
|                    | x = 6.5, x = -2<br>or<br>y = -1.5, y = 7                                                                                    | Correct answers for either both values<br>of <i>x</i> or both values of <i>y</i> (possibly un-<br>simplified)                                                                                                                                                                                                             | A1 cso      |
|                    | Substitutes their x into their $y = 5 - x$<br>or<br>Substitutes their y into their $x = 5 - y$                              | Substitute at least one value of <i>x</i> to find <i>y</i> or vice versa. You may need to check if the substitution is not shown explicitly.                                                                                                                                                                              | M1          |
|                    | $x = 6.5 \left( \text{or} \frac{13}{2} \right),  x = -2$<br>and<br>$y = -1.5 \left( \text{or} -\frac{3}{2} \right),  y = 7$ | Fully correct solutions and simplified.<br>Coordinates do <b>not</b> need to be paired.                                                                                                                                                                                                                                   | A1 cso      |
|                    | Note that some candidates solve their quadr<br>will be the wrong way round. In such cas                                     | -                                                                                                                                                                                                                                                                                                                         |             |
|                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                           | (7)         |
|                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                           | Total 7     |

Note that the following is an incorrect method but the final method mark is still available:  $\begin{aligned} x + y &= 5 \Longrightarrow x^2 + y^2 = 25 \\ x^2 + y^2 &= 25, \ x^2 + x + y^2 = 51 \Longrightarrow x = 26 \\ \text{Scores MOMOAOdMOAO} \\ \text{But then} \\ x &= 26 \Longrightarrow y = 5 - 26 = -21 \\ \text{Scores M1AO} \end{aligned}$ 

| Question<br>Number | Scheme                                  | Notes                                                                                                                                                                                                                                                                                                               | Marks   |
|--------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3(a)               |                                         | $x^n \rightarrow x^{n-1}$ seen at least once.<br>Allow $7 \rightarrow 0$ as evidence.                                                                                                                                                                                                                               | M1      |
|                    |                                         | $3 \times 2x^2$ or $-2 \times \frac{-5}{3}x^{-3}$ (One correct term unsimplified or simplified)                                                                                                                                                                                                                     | A1      |
|                    | $6x^2 + \frac{10}{3x^3}$                | Fully correct answer on one line<br>$6x^2 + \frac{10}{3x^3}$ or $6x^2 + \frac{10}{3}x^{-3}$<br>Allow $3\frac{1}{3}$ or $3.3$ (clear dot over the 3)<br>for $\frac{10}{3}$ (If + <i>c</i> is present score A0)<br>Do <b>not</b> allow 'double decker' fractions<br>e.g. $\frac{3\frac{1}{3}}{x^3}$                   | A1      |
|                    |                                         |                                                                                                                                                                                                                                                                                                                     | (3)     |
| (b)                |                                         | $x^n \rightarrow x^{n+1}$ seen at least once.<br>Allow $7 \rightarrow 7x$ as evidence.<br>But an attempt to integrate their<br>answer to part (a) is M0                                                                                                                                                             | M1      |
|                    | $\frac{x^4}{2} + \frac{5}{3x} + \dots$  | $2\frac{x^{4}}{4} \text{ or } \frac{-5}{3} \times \frac{x^{-1}}{-1} \text{ (one of the first 2 terms correct unsimplified or simplified)}$                                                                                                                                                                          | A1      |
|                    |                                         | $2\frac{x^4}{4}$ and $\frac{-5}{3} \times \frac{x^{-1}}{-1}$ (both of the first 2 terms correct unsimplified or simplified)                                                                                                                                                                                         | A1      |
|                    | $\frac{x^4}{2} + \frac{5}{3x} + 7x + c$ | Fully correct answer on one line<br>including the + c. For $\frac{5}{3x}$ allow $\frac{5}{3}x^{-1}$<br>or $1\frac{2}{3}x^{-1}$ or $1.\dot{6}x^{-1}$ or $\frac{1.\dot{6}}{x}$ (clear dot<br>over the 6). Do not allow $x^1$ for x.<br>Do <b>not</b> allow 'double decker' fractions<br>e.g. $\frac{1\frac{2}{3}}{x}$ | A1      |
|                    |                                         |                                                                                                                                                                                                                                                                                                                     | (4)     |
|                    |                                         |                                                                                                                                                                                                                                                                                                                     | Total 7 |

| Question<br>Number | Scheme                                                                                 | Notes                                                                                                                                                       | Marks   |
|--------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 4(a)               | $u_2 = 2k - 3^2$ or $u_4 = 4k - 3^4$                                                   | Attempts to use the given formula<br><b>correctly</b> at least once for $u_2$ or $u_4$ .<br>So e.g. $u_2 = 4k - 3^4$ is M0                                  | M1      |
|                    | $2k - 9 = 4k - 81 \Longrightarrow k = \dots$                                           | Puts their $u_2$ = their $u_4$ and attempts to solve for $k$ .                                                                                              | M1      |
|                    | <i>k</i> = 36                                                                          | cao                                                                                                                                                         | A1      |
|                    |                                                                                        |                                                                                                                                                             | (3)     |
| (b)                | $u_1 = "36" - 3^1, u_2 = 2("36") - 3^2,$<br>$u_3 = 3("36") - 3^3, u_4 = 4("36") - 3^4$ | Attempts to find the values of the first 4 terms <u>correctly</u> using their value of <i>k</i> . Allow slips but the method and intention should be clear. | M1      |
|                    | $\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$<br>(33 + 63 + 81 + 63)                    | Adds their first 4 terms. Allow if in<br>terms of <i>k</i> e.g.<br>$k-3+2k-3^2+3k-3^3+4k-3^4$<br>(=10k-120)                                                 | M1      |
|                    | $\left(\sum_{r=1}^{4} u_r =\right) 240$                                                | сао                                                                                                                                                         | A1      |
|                    |                                                                                        |                                                                                                                                                             | (3)     |
|                    |                                                                                        |                                                                                                                                                             | Total 6 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                               | Marks      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|
| 5(a)               | $\left(1-\frac{1}{2}x\right)^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     |            |
|                    | $\left(1 - \frac{1}{2}x\right)^{10} = 1 + {\binom{10}{1}} \left(-\frac{1}{2}x\right) + {\binom{10}{2}} \left(-\frac{1}$ | $\left(-\frac{1}{2}x\right)^2 + {\binom{10}{3}} \left(-\frac{1}{2}x\right)^3 \dots$ | M1         |
|                    | M1: The <b>method</b> mark is awarded for an attempt at <b>and/or</b> fourth term. The <b>correct</b> binomial coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · ·                                                                                 |            |
|                    | power of <i>x</i> . Ignore bracket errors and omission of or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | incorrect powers of $\pm \frac{1}{2}$ . Accept any                                  |            |
|                    | notation for ${}^{10}C_2$ or ${}^{10}C_3$ , e.g. $\begin{pmatrix} 10\\2 \end{pmatrix}$ or $\begin{pmatrix} 10\\3 \end{pmatrix}$ or 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 or 120 from Pascal's triangle.                                                    |            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allow terms to be "listed". Allow                                                   |            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | equivalents for $\frac{45}{4}$ e.g. $11\frac{1}{4}$ , 11.25                         |            |
|                    | $=1-5x, +\frac{45}{4}x^2, -15x^3 + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Allow $+\frac{45}{4}x^2$ to come from                                               | B1, A1, A1 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\binom{10}{2} \left(\frac{1}{2}x\right)^2$ . Do not allow $1 + -5x$                |            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for $1-5x$ or $+-15x^3$ for $-15x^3$ .                                              |            |
| (b)                | $(3+5x-2x^2)(1-\frac{1}{2}x)^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | (4)        |
|                    | $\left(3+5x-2x^{2}\right)\left(1-\frac{1}{2}x\right)^{10} = \left(3+5x-2x^{2}\right)^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(1-5x+\frac{45}{4}x^2-15x^3)=$                                                     |            |
|                    | Uses their expansion from part (a) to identify the $x^3$ terms or the $x^3$ coeff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | icients together                                                                    | M1         |
|                    | Look for $3 \times ("-15") + 5 \times ("\frac{45}{4}") + (-2) \times ("-5")$ with or without the $x^3$ 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |            |
|                    | $\frac{85}{4}$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cao (Allow $\frac{85}{4}x^3$ )                                                      | A1         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                   | (2)        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     | Total 6    |

| Number<br>6(a) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                |
|                | <b>Either</b><br>Correct <b>shape</b> : Look for a curve in quadrants 1 and 2 that moves smoothly from a negative gradient ( $<$ -1) becoming less negative to approximately 0 with no turning points. Allow the curve to tend towards the vertical on the lhs as long as it does not go too far beyond the vertical and allow if it does not appear asymptotic to the <i>x</i> -axis on the rhs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   | B1             |
| -              | A curve or line with an <b>intercept</b> on the positive y-axis marked as 1 or $(0, 1)$ or $(1, 0)$ as long as it is in the correct place. Allow if away from the sketch but must be $(0, 1)$ or e.g. $x = 0, y = 1$ if it is. The sketch has precedence if there is any ambiguity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |                |
|                | Correct <b>shape</b> , <b>position</b> and <b>intercept</b> : Shape and intercept as above. For position look for an asymptote that is at least below a horizontal line that is half way between the intercept and the <i>x</i> -axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   | B1             |
| (b)            | h = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Correct <i>h</i> (Allow $h = -0.1$ ). May be<br>implied by their trapezium rule and<br>may be unsimplified e.g. ((-0.5)-(-0.9))/4 | (2<br>B1       |
|                | $A = \frac{1}{2}(0.1) \Big[ 1.866 + 1.414 + 2(1.741 + 1.625 + 1.516) \Big]$<br>A correct application of the trapezium rule using their <i>h</i> . The bracketing must be correct but may be implied by their final answer. You may need to check if their <i>h</i> is incorrect. Note that $1.866 + 1.414 + 2(1.741 + 1.625 + 1.516) = 13.044$<br>The 'square' brackets needs to contain first <i>y</i> value plus last <i>y</i> value and the inner bracket to be multiplied by 2 and to be the summation of the remaining <i>y</i> values in the table with no additional values. If the only mistake is a copying error or is to omit one value from inner bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however).<br>M0 if values used are <i>x</i> values instead of <i>y</i> values.<br>$A = \frac{1}{2}(0.1)1.866 + 1.414 + 2(1.741 + 1.625 + 1.516) = 11.2713 \text{ scores B1M0A0}$ $A = \frac{1}{2}(0.1)1.866 + 1.414 + 2(1.741 + 1.625 + 1.516) = 0.6522 \text{ scores B1M1A1}$ Separate trapezia may be used: B1 for <i>h</i> = 0.1, M1 for $1/2h(a + b)$ used 3 or 4 times and trapezia added together. |                                                                                                                                   | M1             |
| -              | A = 0.6522 or $A = 0.652$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Allow either answer (must be<br>positive) and allow $\frac{3261}{5000}$ if no decimal<br>seen.                                    | A1 (2          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | (3)<br>Total 5 |

| Question<br>Number | Scheme                                                                                           | Notes                                                                                                                                                                                                         | Marks          |
|--------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 7(a)               | $m = \frac{5-1}{-1-4}$                                                                           | Attempts $\frac{\text{change in } y}{\text{change in } x}$ . Condone one<br>sign slip. Maybe implied by $\pm \frac{4}{5}$                                                                                     | M1             |
|                    | $=-\frac{4}{5}$                                                                                  | cao                                                                                                                                                                                                           | A1             |
|                    | Correct answer only so                                                                           | cores both marks.                                                                                                                                                                                             |                |
|                    |                                                                                                  |                                                                                                                                                                                                               | (2)            |
| (a)<br>Way 2       | 5 = -m + c<br>1 = 4m + c<br>$\Rightarrow 5 - 1 = -m - 4m \Rightarrow m = \dots$                  | Correct method for the gradient                                                                                                                                                                               | M1             |
|                    | $\frac{(m=)-\frac{4}{5}}{(m=)-\frac{4}{5}}$                                                      | сао                                                                                                                                                                                                           | A1             |
|                    |                                                                                                  |                                                                                                                                                                                                               | (2)            |
| (b)                | $y-5 = "-\frac{4}{5}"(x+1)$<br>or<br>$y-1 = "-\frac{4}{5}"(x-4)$                                 | Uses A or B and their m in a correct<br>straight line method.<br>If using $y = mx + c$ must reach as far<br>as $c =$<br>Attempting the normal is M0.                                                          | M1             |
|                    | 4x + 5y - 21 = 0                                                                                 | Allow any integer multiple                                                                                                                                                                                    | A1             |
|                    |                                                                                                  |                                                                                                                                                                                                               | (2)            |
| (c)                | $M$ is $\left(\frac{3}{2}, 3\right)$                                                             | Correct midpoint                                                                                                                                                                                              | B1             |
|                    | $MC^{2} = \left(5 - \frac{3}{2}\right)^{2} + \left(k - \frac{3}{3}\right)^{2}$                   |                                                                                                                                                                                                               |                |
|                    | Correct use of Pythagoras for MC.                                                                |                                                                                                                                                                                                               | M1             |
|                    | E.g. sight of $\left(5 - \frac{3}{2}\right)^2 + h^2$ or $\sqrt{\left(5 - \frac{3}{2}\right)^2}$  | $\left(\frac{1}{2}\right)^{2} + h^{2}$ where $h = k - "3"$ or $h = k$                                                                                                                                         |                |
|                    | $\left(5 - \frac{3}{2}\right)^2 + \left(k - \frac{3}{2}\right)^2 = 13 \Longrightarrow k = \dots$ | Uses $\sqrt{13}$ correctly to find a value for<br>k. Must be a correct method so e.g.<br>$\left(5 - \frac{3}{2}\right)^2 + \left(k - \frac{3}{3}\right)^2 = 13^2$ scores M0<br>Dependent on the first M mark. | <b>d</b> M1    |
|                    | $(k=)3\pm\frac{\sqrt{3}}{2}$ oe                                                                  | Both. Accept e.g. $\frac{24 \pm \sqrt{48}}{8}, \frac{6 \pm \sqrt{3}}{2}$<br>and ignore how they are referenced,<br>e.g. there is no need for $k = \dots$                                                      | A1             |
|                    |                                                                                                  |                                                                                                                                                                                                               | (4)<br>Tatal 9 |
|                    |                                                                                                  |                                                                                                                                                                                                               | Total 8        |

| Question<br>Number | Scheme                                                                                                                                                                               | Notes                                                                                                                                            | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8                  | (Mark (a) and                                                                                                                                                                        | (b) together)                                                                                                                                    |       |
| (a)                | $2(1)^{3} - 3(1)^{2} + p(1) + q = -6$                                                                                                                                                | Attempts $f(\pm 1) = -6$                                                                                                                         | M1    |
|                    | p + q = -5 *                                                                                                                                                                         | Correct equation with no errors.                                                                                                                 | A1    |
|                    |                                                                                                                                                                                      |                                                                                                                                                  | (2)   |
| (a)<br>Way 2       | $2x^{2} - x + p - 1$ $x - 1) 2x^{3} - 3x^{2} + px + q$ $2x^{3} - 2x^{2}$ $-x^{2} + px + q$ $-x^{2} + x$ $(p - 1)x + q$ $(p - 1)x - (p - 1)$ $p + q - 1$ $\Rightarrow p + q - 1 = -6$ | Attempts long division correctly (allow sign slips only) leading to a remainder in <i>p</i> and <i>q</i> which is set = $-6$                     | M1    |
|                    | p + q = -5 *                                                                                                                                                                         | Correct equation with no errors.                                                                                                                 | A1    |
|                    |                                                                                                                                                                                      |                                                                                                                                                  | (2)   |
| (b)                | $2(-2)^{3} - 3(-2)^{2} +$<br>A clear attempt at $f(-2) = 0$ or $f(2) = 0$ . M<br>the equation is incorrect and no                                                                    | ay be implied by a correct equation but if                                                                                                       | M1    |
|                    | $p+q = -5, q-2p = 28$ $\Rightarrow p = -11, q = 6$                                                                                                                                   | Solves simultaneously.<br>Must be using $p + q = -5$ and their<br>linear equation in $p$ and $q$ and must<br>reach values for both $p$ and $q$ . | M1    |
|                    |                                                                                                                                                                                      | Correct values                                                                                                                                   | A1    |
|                    |                                                                                                                                                                                      |                                                                                                                                                  | (3)   |

| <b>8</b> (c) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Divides $f(x)$ by $(x+2)$ or compares                                                                                                                                                                                                                             |             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|              | $\frac{2x^3 - 3x^2 - 11x + 6}{x + 2} = 2x^2 + kx + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | coefficients or uses inspection and<br>obtains at least the first 2 terms of a<br>quadratic with $2x^2$ as the first term and<br>an x term. Must be seen in (c).                                                                                                  | M1          |
|              | $2x^2 - 7x + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct quadratic                                                                                                                                                                                                                                                 | A1          |
|              | $2x^2 - 7x + 3 = (2x - 1)(x - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attempts to factorise their 3 term<br>quadratic expression. The usual rules<br>apply here so if $2x^2 - 7x + 3$ is<br>factorised as $(x - \frac{1}{2})(x - 3)$ , this scores<br>M0 unless the factor of 2 appears later.<br><b>Dependent on the first M mark.</b> | <b>d</b> M1 |
|              | f $(x) = (x+2)(2x-1)(x-3)$<br>Or e.g.<br>f $(x) = 2(x+2)(x-\frac{1}{2})(x-3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fully correct factorisation. Must see all factors together on one line and no commas in between.                                                                                                                                                                  | A1          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | (4)         |
|              | <b>Answers with no</b><br>$2x^3 - 3x^2 - 11x + 6 = (x+2)(2x^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                 |             |
|              | $2x^3 - 3x^2 - 11x + 6 = 2(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2)(x+2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(x-\frac{1}{2})(x-3)$ scores full marks                                                                                                                                                                                                                          |             |
|              | $2x^{3} - 3x^{2} - 11x + 6 = (x+2)(x - \frac{1}{2})(x - \frac{1}$ | -)()                                                                                                                                                                                                                                                              |             |
|              | <u>Just</u> writing down roots of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the cubic scores no marks.                                                                                                                                                                                                                                        |             |
|              | Ignore any "= 0" and also ignore any subsector<br>factorised for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                   | Total 9     |

|                |                                                                                                                         |                                                                                                                       | Total 7 |
|----------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|
|                |                                                                                                                         |                                                                                                                       | (5      |
|                | = 68500                                                                                                                 | Dependent on both previous M's.           cao                                                                         | A1      |
|                | $S_{50} = "25" \times 1500 + S_{26}$                                                                                    | Adds their AP sum to constant terms<br>where 50 terms are being considered.                                           | ddM1    |
|                | Or<br>constant terms = $(50 - (N - 2)) \times 1500$                                                                     | was used for the previous M, allow<br>the use of 25 or 26 here.                                                       | M1      |
|                | constant terms = $(50 - (N - 1)) \times 1500$                                                                           | $(50 - (N - 2)) \times 1500$ . So if $n = 25$                                                                         | M1      |
|                |                                                                                                                         | Attempts $(50 - (N - 1)) \times 1500 \text{ or}$                                                                      |         |
|                | $\frac{S_{26} = \frac{1}{2}(26 - 1)[1000 + 1480]}{= 31000}$                                                             | Correct sum (may be implied)                                                                                          | A1      |
| (b)<br>Way 2   | $S_{26} = \frac{1}{2} ("26"-1) [2(1000) + ("26"-1-1) \times 20]$<br>or<br>$S_{26} = \frac{1}{2} ("26"-1) [1000 + 1480]$ | Correct attempt at AP sum with<br>n = their  N - 1, a = 1000, d = 20  or<br>n = their  N - 1, a = 1000, l = 1500      | M1      |
|                | 1                                                                                                                       |                                                                                                                       | (5      |
|                | = 68500                                                                                                                 | cao                                                                                                                   | A1      |
|                | $S_{50} = "24" \times 1500 + S_{26}$                                                                                    | Adds their AP sum to constant terms<br>where 50 terms are being considered.<br><b>Dependent on both previous M's.</b> | ddM1    |
|                | Or<br>constant terms = $(50 - (N - 1)) \times 1500$                                                                     | was used for the previous M, allow<br>the use of 24 or 25 here.                                                       | M1      |
|                | constant terms = $(50 - N) \times 1500$                                                                                 | Attempts $(50 - N) \times 1500$ or<br>$(50 - (N - 1)) \times 1500$ . So if $n = 26$                                   |         |
|                | =32 500                                                                                                                 | Correct sum (may be implied)                                                                                          | A1      |
| (b)            | $S_{26} = \frac{1}{2} ("26") [2(1000) + ("26"-1) \times 20]$<br>or<br>$S_{26} = \frac{1}{2} ("26") [1000 + 1500]$       | Correct attempt at AP sum with<br>n = their  N, a = 1000, d = 20  or<br>n = their  N, a = 1000, l = 1500              | M1      |
|                |                                                                                                                         |                                                                                                                       | (2      |
|                | Correct answer only sc                                                                                                  |                                                                                                                       |         |
|                | Listing:<br>Uses a correct arithmetic progression, so con<br>1500 and so concludes $(N =)$ 26                           | siders 1000, 1020, 1040 etc. to reach                                                                                 |         |
|                | ( <i>N</i> =)26                                                                                                         | Cao<br>(Allow <i>n</i> or any other letter for <i>N</i> )                                                             | A1      |
| <b>(a)</b>     | $1000 + (N-1) \times 20 = 1500 \Longrightarrow N = \dots$                                                               | calculates $\frac{1500-1000}{20}$ +1.                                                                                 | M1      |
| Number<br>9(a) | Scheme                                                                                                                  | Notes<br>Uses a correct term formula with                                                                             | Marks   |

Important Note: Special Case

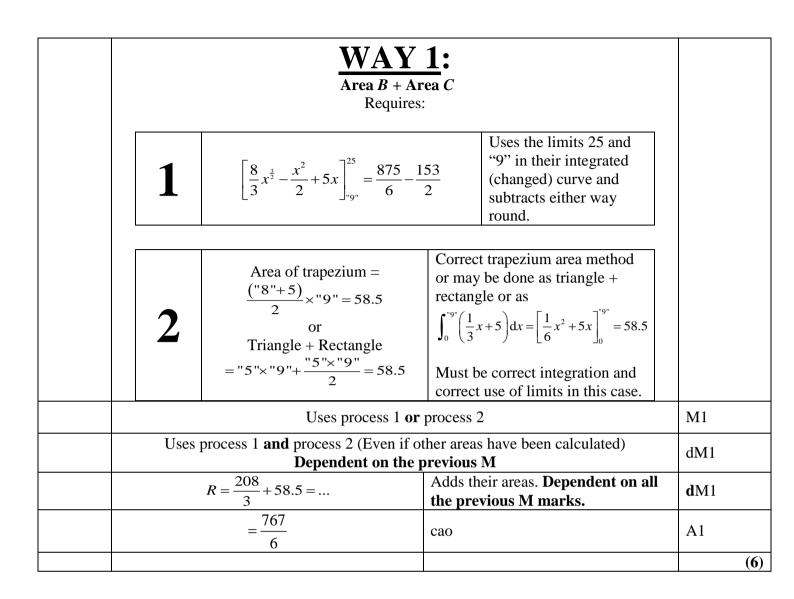
Candidates who obtain N = 25 in part (a) are allowed a full recovery in part (b) for,

$$\frac{1}{2}(25)[2 \times 1000 + 24 \times 20] = 31\ 000 = M1A1$$

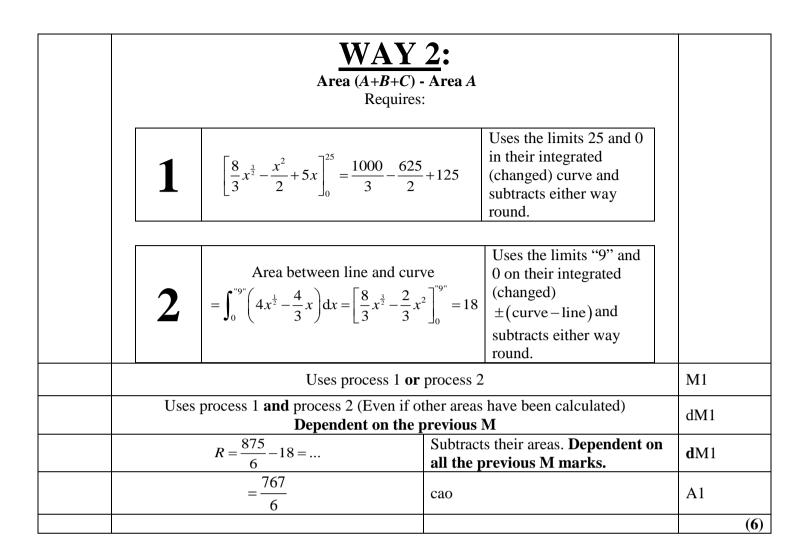
$$25 \times 1500 (= 37500) = M1$$

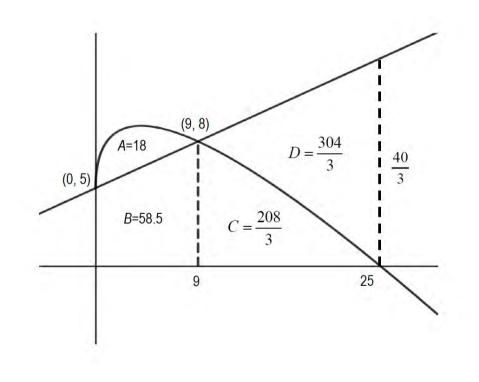
$$31\ 000 + 37\ 500 = 68\ 500 = ddM1A1$$

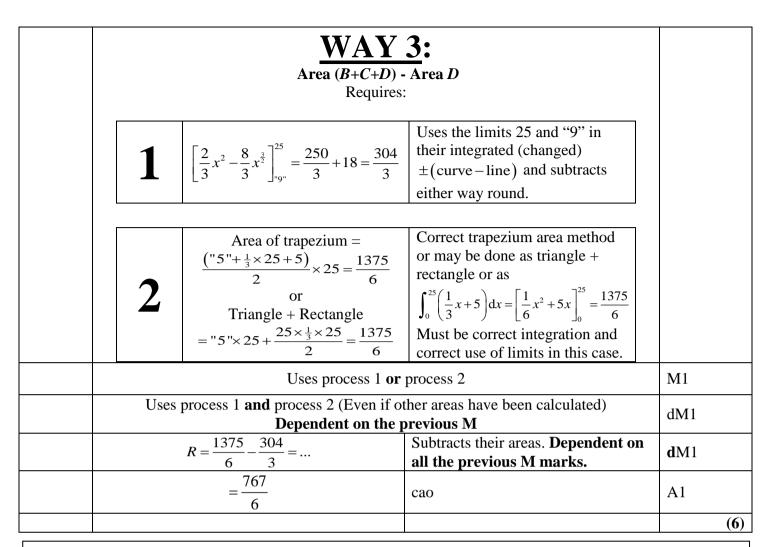
### Listing in (b):


| Week  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10    | 11    | 12    | 13    |
|-------|------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| Cars  | 1000 | 1020 | 1040 | 1060 | 1080 | 1100 | 1120 | 1140 | 1160 | 1180  | 1200  | 1220  | 1240  |
| Total | 1000 | 2020 | 3060 | 4120 | 5200 | 6300 | 7420 | 8560 | 9720 | 10900 | 12100 | 13320 | 14560 |

| Week  | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22    | 23    | 24    | 25    | 26    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cars  | 1260  | 1280  | 1300  | 1320  | 1340  | 1360  | 1380  | 1400  | 1420  | 1440  | 1460  | 1480  | 1500  |
| Total | 15820 | 17100 | 18400 | 19720 | 21060 | 22420 | 23800 | 25200 | 26620 | 28060 | 29520 | 31000 | 32500 |

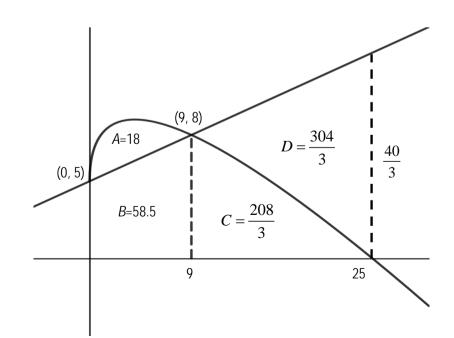

| Week  | 27    | 28    | 29    | <br>49    | 50    |
|-------|-------|-------|-------|-----------|-------|
| Cars  | 1500  | 1500  | 1500  | <br>1500  | 1500  |
| Total | 34000 | 35500 | 37000 | <br>67000 | 68500 |


M1: Attempts the sum of either 25 or 26 terms of a series with first term 1000 and d = 20A1: S = 31000 or 32500 Then follow the scheme


| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                                                                                                                                                                                  | Marks |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| 10(a)              | $\frac{1}{3}x + 5 = 4x^{\frac{1}{2}} - x + 5 \Longrightarrow x = 3x^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sets line = curve and obtains an<br>equation of the form $\alpha x = \beta x^{\frac{1}{2}}$ or<br>equivalent e.g. $\alpha x - \beta x^{\frac{1}{2}} = 0$                                                                                               | M1    |  |  |  |
|                    | <i>x</i> = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Obtains $x = 9$ from a correct equation                                                                                                                                                                                                                | A1    |  |  |  |
|                    | Note that $x - 3x^{\frac{1}{2}} = 0 \Longrightarrow x^2 - 9x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=0 \Rightarrow x = 9$ is acceptable                                                                                                                                                                                                                   |       |  |  |  |
|                    | (0, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Correct point. Coordinates not<br>necessary and may be seen on the<br>diagram.                                                                                                                                                                         | B1    |  |  |  |
|                    | (9, 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Correct point. Coordinates not<br>necessary and may be seen as values<br>and/or on the diagram.                                                                                                                                                        | A1    |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        | (4)   |  |  |  |
| (b)                | $x = 25 \Rightarrow 4(25)^{\frac{1}{2}} - 25 + 5 = 20 - 25 + 5 = 0$<br>So x-coordinate of F is 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shows <i>F</i> 's <i>x</i> coordinate is 25. Need<br>to see $4(25)^{\frac{1}{2}}$ evaluated as $4 \times 5$ or 20                                                                                                                                      | B1    |  |  |  |
|                    | Note: This may be shown by solving $4x^{\frac{1}{2}} - x + 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |       |  |  |  |
|                    | Example 1<br>$4x^{\frac{1}{2}} - x + 5 = 0 \Longrightarrow x - 4x^{\frac{1}{2}} - 5 = 0 \Longrightarrow (x^{\frac{1}{2}} + 1)(x^{\frac{1}{2}} - 5) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |       |  |  |  |
|                    | $x^{\frac{1}{2}} - 5 = 0 \Longrightarrow x^{\frac{1}{2}} = 5 \Longrightarrow x = 25$<br>Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |       |  |  |  |
|                    | $4x^{\frac{1}{2}} - x + 5 = 0 \Longrightarrow 4x^{\frac{1}{2}} = x - 5 \Longrightarrow 16x = (x - 5)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |       |  |  |  |
|                    | $x^{2} - 26x + 25 = 0 \Longrightarrow (x - 25)(x - 1) = 0 \Longrightarrow x = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |       |  |  |  |
| -                  | (In this case, ignore any reference to the other root provided $x = 25$ is obtained)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |       |  |  |  |
| (c)                | The first 2 marks (M1A1) in (c) are to be s<br>method used to find th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                      | (1)   |  |  |  |
|                    | $\int \left(4x^{\frac{1}{2}} - x + 5\right) dx = \frac{1}{2}$<br>or<br>$\int \left(4x^{\frac{1}{2}} - x + 5 - \left(\frac{1}{3}x + 5\right)\right) dx = \int \left(\frac{1}{3}x + 5\right) dx = \int \left($ | $\left(4x^{\frac{1}{2}} - \frac{4}{3}x\right)dx = \frac{8}{3}x^{\frac{3}{2}} - \frac{2}{3}x^{2}$<br>at least once<br>aplified. Score as soon as the correct<br>he curve or their $\pm(\text{curve}-\text{line})$ .<br>been made in 'simplifying' their | M1A1  |  |  |  |












#### No algebraic integration seen:

Candidates may perform the integration on their calculators. In such cases a maximum of 2 marks is available: **M0A0M1dM1dM0A0** if the values for the areas for the M2 and M3 follow from their values found in part (a) (you may need to check)



| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                   | Notes                                                                                                                                                                                                                                   | Marks          |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| 11(a)              | $7x^{2} + 2kx + k^{2} - k - 7(=0)$ or $a = 7, b = 2k, c = k^{2} - k - 7$                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | Attempts to collect terms to one side so look for $7x^2 + 2kx + k^2 \pm k \pm 7 (= 0)$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | (the "= 0" may be implied) or writes down values for " $a$ ", " $b$ " and " $c$ " where " $a$ " = 7,                                                                                                                                                                                                                     |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | "b" = 2k and "c" = $k^2 \pm k \pm 7$ which may also be implied by their work.                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | E.g. $(2k)^2 - 4 \times 7 \times (k^2 - k - 7)$                                                                                                                                                                                                                                                                          | Use of $b^2 - 4ac$ with $a = \pm 7$ , $b = \pm 2k$<br>and $c = \pm k^2 \pm k \pm 7$ . May be seen as                                                                                                                                    |                |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                          | part of e.g. $b^2 = 4ac$ but not as part                                                                                                                                                                                                |                |  |  |  |
|                    | $(2k)^2 - 4 \times 7 \times (k^2 - k - 7) > 0$                                                                                                                                                                                                                                                                           | of the quadratic formula – the $b^2 - 4ac$ must be 'extracted'.                                                                                                                                                                         | M1             |  |  |  |
|                    | $(2k)^2 - 4 \times 7 \times (k^2 - k - 7) < 0$                                                                                                                                                                                                                                                                           | Condone missing brackets for this                                                                                                                                                                                                       |                |  |  |  |
|                    | $\left(2k\right)^2 = 4 \times 7 \times \left(k^2 - k - 7\right)$                                                                                                                                                                                                                                                         | mark provided the intention is clear. There must be no $x$ 's.                                                                                                                                                                          |                |  |  |  |
|                    | $(2k)^2 - 4 \times 7 \times (k^2 -$                                                                                                                                                                                                                                                                                      | (-k-7) > 0                                                                                                                                                                                                                              |                |  |  |  |
|                    | Obtains a correct quadratic inequality that is no<br>recovered from missing brackets around the "2<br>this mark if there was an incorrect rearrangeme                                                                                                                                                                    | k" or the " $k^2 - k - 7$ " but do not allow                                                                                                                                                                                            | A1             |  |  |  |
|                    | and/or incorrect values of any of "a", "b" or "c" stated e.g. identifying "c" as $k^2 - k + 7$ initially and then using "c" as $k^2 - k - 7$                                                                                                                                                                             |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | $6k^2 - 7k - 49 < 0*$ <b>Fully correct proof with no errors</b> . This includes bracketing errors, sign errors and e.g. identifying "c" as $k^2 - k + 7$ initially and then using "c" as $k^2 - k - 7$<br>Starting with e.g. $7x^2 + 2kx + k^2 - k - 7 > 0$ or $7x^2 + 2kx + k^2 - k - 7 < 0$<br>would also be an error. |                                                                                                                                                                                                                                         |                |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         | (4)            |  |  |  |
| (b)                | $6k^2 - 7k - 49 = 0 \Longrightarrow k = \dots$                                                                                                                                                                                                                                                                           | Attempt to solve the 3TQ from part<br>(a) to obtain 2 values for <i>k</i> . (see<br>general guidance for solving a 3TQ).<br>May be implied by their values but if<br>no working is shown and the roots<br>are incorrect, score M0 here. | M1             |  |  |  |
|                    | $k = -\frac{7}{3}, \frac{7}{2}$                                                                                                                                                                                                                                                                                          | Correct values. May be seen as part<br>of their inequalities.<br>Allow $k = \frac{7 \pm 35}{12}$                                                                                                                                        | A1             |  |  |  |
|                    | 7 7 (77) 7 7                                                                                                                                                                                                                                                                                                             | Attempt inside region for their<br>critical values. Do not award simply<br>for diagram or table.                                                                                                                                        | M1             |  |  |  |
|                    | $-\frac{7}{3} < k < \frac{7}{2} \text{ or } \left(-\frac{7}{3}, \frac{7}{2}\right) \text{ or } k > -\frac{7}{3} \text{ and } k < \frac{7}{2}$                                                                                                                                                                            | Cao. ( $k > -\frac{7}{3}$ , $k < \frac{7}{2}$ is A0 i.e. must<br>see " <b>and</b> " if regions given                                                                                                                                    | A1             |  |  |  |
|                    | Note that 7 7 with no working                                                                                                                                                                                                                                                                                            | separately)                                                                                                                                                                                                                             |                |  |  |  |
|                    | Note that $-\frac{7}{3} < k < \frac{7}{2}$ with no working scores full marks in part (b)                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                         |                |  |  |  |
|                    | Note: Allow <i>x</i> to be used in (b) rather than                                                                                                                                                                                                                                                                       | <i>k</i> but the final mark requires <i>k</i> only                                                                                                                                                                                      |                |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         | (4)<br>Total 8 |  |  |  |

| Question<br>Number | Scheme                                                 | Notes                                                                                                                                                                                                                                                                                                                | Marks |
|--------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 12(a)              | $6\cos x - 5\tan x = 6\cos x - 5\frac{\sin x}{\cos x}$ | Uses $\tan x = \frac{\sin x}{\cos x}$ . This may be<br>implied by e.g.<br>$6\cos x - 5\tan x = 0 \Rightarrow 6\cos^2 x - 5\sin x = 0$                                                                                                                                                                                | M1    |
|                    | $6\cos^2 x - 5\sin x = 6(1 - \sin^2 x) - 5\sin x$      | Uses $\cos^2 x = 1 - \sin^2 x$                                                                                                                                                                                                                                                                                       | M1    |
|                    | $6\sin^2 x + 5\sin x - 6 = 0*$                         | Correct proof with no notational errors,<br>missing brackets, missing variables,<br>$\sin x^2$ instead of $\sin^2 x$ etc. Allow the<br>proof to be in terms of a different<br>variable but the final equation must be in<br>terms of x. If everything is moved to one<br>side, allow the "= 0" to appear at the end. | A1*   |
|                    | Allow to wor                                           |                                                                                                                                                                                                                                                                                                                      |       |
|                    | $6\sin^2 x + 5\sin x - 6 = 0 \Longrightarrow$          | $-6\left(\sin^2 x - 1\right) + 5\sin x = 0$                                                                                                                                                                                                                                                                          |       |
|                    | $-6\cos^2 x +$                                         | $5\sin x = 0$                                                                                                                                                                                                                                                                                                        |       |
|                    | M1: Uses cos                                           | $x^{2} = 1 - \sin^{2} x$                                                                                                                                                                                                                                                                                             |       |
|                    | $-6\cos x + \frac{5\sin x}{\cos x} = 0 =$              | $\Rightarrow -6\cos x + 5\tan x = 0$                                                                                                                                                                                                                                                                                 |       |
|                    | M1: Uses ta                                            | $n x = \frac{\sin x}{\cos x}$                                                                                                                                                                                                                                                                                        |       |
|                    | A1: $6\cos x$                                          |                                                                                                                                                                                                                                                                                                                      |       |
|                    | Achieves this result with no                           |                                                                                                                                                                                                                                                                                                                      | (3)   |

| <b>12(b)</b> |                                                                                             | Attempt to solve the given quadratic for                                                                 |         |
|--------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------|
|              |                                                                                             | $\sin x$ or for $\sin(2\theta - 10^\circ)$ or e.g. y or                                                  |         |
|              | $6\sin^2 x + 5\sin x - 6 = 0 \Longrightarrow \sin x = \dots$                                | even x. Allow this mark if their quadratic is a clear mis-copy e.g. if they attempt to                   | M1      |
|              |                                                                                             | solve $6\sin^2 x - 5\sin x - 6 = 0$ having<br>previously obtained $6\sin^2 x + 5\sin x - 6 = 0$          |         |
|              |                                                                                             | Correct value (Ignore how they reference                                                                 |         |
|              | $\sin x = \frac{2}{3}$ or $\sin(2\theta - 10^{\circ}) = \frac{2}{3}$                        | it so just look for $\frac{2}{3}$ ). The other root can                                                  | A1      |
|              | 3 3 3                                                                                       | be ignored whether it is correct or incorrect.                                                           |         |
|              |                                                                                             | Finds arcsin of their $2/3$ . May be implied                                                             |         |
|              |                                                                                             | 41.81 or by their value of $\sin^{-1}\left(\frac{2}{3}\right)$ and                                       |         |
|              | $2\theta - 10^\circ = \sin^{-1}\left(\frac{2}{3}\right) = \dots \Rightarrow \theta = \dots$ | attempts $\frac{\sin^{-1}\left(\frac{2}{3}\right)\pm 10}{2}$ . Their $\sin^{-1}\left(\frac{2}{3}\right)$ | M1      |
|              |                                                                                             | must be a value and not just $\sin^{-1}\left(\frac{2}{3}\right)$ .                                       |         |
|              |                                                                                             | May be implied by sight of 25.9°                                                                         |         |
|              |                                                                                             | Awrt two correct angles                                                                                  | A1      |
|              | $(\theta =)25.9^{\circ}, 74.1^{\circ}, 205.9^{\circ}, 254.1^{\circ}$                        | All four angles and allow awrt the answers shown. Ignore answers outside                                 |         |
|              |                                                                                             | the range $(0, 360^\circ)$ but withhold this                                                             | A1      |
|              |                                                                                             | mark for extra answers in range.<br>(Degree symbols not required)                                        |         |
|              |                                                                                             | (2 chice symbols not required)                                                                           | (5)     |
|              |                                                                                             |                                                                                                          | Total 8 |

| Question<br>Number | Scheme                                                                                                                                                             | Notes                                                                                                                                                                                                                                                                                                                                               | Marks   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 13(i)              | $\log 4^{3x+2} = (3x+2)\log 4 (\text{allow } 3x+2\log 4)$ $\log 3^{600} = 600\log 3$ $\log_4 4^{3x+2} = 3x+2$ $\log_3 3^{600} = 600$ $3x+2 = \log_4 3^{600}$       | Evidence of the application of the<br>power law of logarithms or the<br>definition of a logarithm. This is<br>independent of any other working –<br>see examples. Generally this is for<br>e.g. $\log_x y^k = k \log_x y$ or $\log_x x^k = k$<br>or $\log y^k = k \log y$ etc. where <i>x</i> , <i>y</i> and<br><i>k</i> are any variables/numbers. | M1      |
|                    | Examples:<br>$x = \frac{1}{3} \left( \frac{600 \log 3}{\log 4} - 2 \right)$ or $x = \frac{\frac{600 \log_4 3 - 2}{3}}{0}$ $x = \frac{\frac{600}{\log_3 4} - 2}{3}$ | This mark is for a correct expression<br>or a correct value for <i>x</i> . Note that it<br>must be an expression that can be<br>evaluated e.g. $x = \frac{\log_4 3^{600} - 2}{3}$ is A0.<br>May be implied by awrt 158<br>following correct work.                                                                                                   | A1      |
|                    | <i>x</i> = 157.8                                                                                                                                                   | Cao (Must be this value <b>not</b> awrt)                                                                                                                                                                                                                                                                                                            | A1      |
| (**)               | 2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                     | (3)     |
| (ii)               | $2\log_a 5 = \log_a 25 \text{ or } \log_a 5^2$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     | B1      |
|                    | $\log_{a} (3b-2) - \log_{a} 25 = \log_{a} \frac{(3b-2)}{25}$<br>or<br>$\log_{a} 25 + \log_{a} a^{4} = \log_{a} 25a^{4}$                                            | Correct use of subtraction or addition rule                                                                                                                                                                                                                                                                                                         | M1      |
|                    | $a^4 = \frac{3b-2}{25}$ $b = \frac{25a^4+2}{2}$                                                                                                                    | Removes logs correctly. <b>Dependent</b><br>on the previous M.                                                                                                                                                                                                                                                                                      | dM1     |
|                    | $b = \frac{25a^4 + 2}{3}$                                                                                                                                          | Cao oe e.g. $b = \frac{25a^4}{3} + \frac{2}{3}$                                                                                                                                                                                                                                                                                                     | A1      |
|                    | aa                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                     | (4)     |
|                    | Special Ca $\log_a (3b-2) - \log_a 25 = \log_a$ Scores B1M00                                                                                                       | $\frac{25}{3b-2} \Longrightarrow a^4 = \frac{25}{3b-2}$                                                                                                                                                                                                                                                                                             |         |
|                    | Scores Diffic                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     | Total 7 |

| Question<br>Number | Scheme                              | Notes                                       | Marks |
|--------------------|-------------------------------------|---------------------------------------------|-------|
| 14                 | Mark (a) and (b)                    | ) together                                  |       |
| (a)                | (0, -8)                             | x = 0 or $y = -8(May be seen on a sketch)$  | B1    |
|                    | $(0, -\delta)$                      | x = 0 and $y = -8(May be seen on a sketch)$ | B1    |
|                    |                                     |                                             | (2)   |
| (b)                | Uses 64, 100 and $k$ (not $k^2$ ) t | o obtain a value for k                      | M1    |
|                    | <i>k</i> = -36                      | cao                                         | A1    |
|                    | k = -36 scores be                   |                                             |       |
|                    |                                     |                                             | (2)   |

| 14(c) |                                                                                                                                                        | Correct <i>x</i> -coordinate. Allow $x = 6$ or                                                                                                                                                                                                                                  |             |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
|       | $y = -16 \Longrightarrow a = 6$                                                                                                                        | just sight of 6. May be seen on a sketch.                                                                                                                                                                                                                                       | B1          |  |  |  |
|       | $m_{N} = \frac{-16 + 8}{6 - 0} \left( = -\frac{4}{3} \right)$<br>or<br>$m_{N} = \frac{-16 + 8}{a - 0} \left( = -\frac{8}{a} \right)$                   | Correct attempt at gradient using the centre and their <i>A</i> . Allow one sign slip. If they use <i>O</i> for the centre, this is M0. Allow if in terms of <i>a</i> i.e. if they haven't found or can't find <i>a</i> .                                                       | M1          |  |  |  |
|       | $m_{T} = -1 \div "-\frac{4}{3}" = \dots$ or $m_{T} = -1 \div "-\frac{8}{a}" = \dots$                                                                   | Correct use of perpendicular gradient rule. Allow if in terms of <i>a</i> .                                                                                                                                                                                                     | M1          |  |  |  |
|       | Alternative by implicit                                                                                                                                |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | Note that there is no penalty for a                                                                                                                    |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | $x^2 + y^2 + 16y + k = 0 \Longrightarrow 2x$                                                                                                           | un un                                                                                                                                                                                                                                                                           |             |  |  |  |
|       | M1 for $\alpha x + \beta y \frac{dy}{dx} + c \frac{dy}{dx} = 0$                                                                                        |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | $2(6) + 2(-16)\frac{dy}{dx} + 16\frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = \frac{12}{16}$                                                       |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | M1 for substituting $x = 6^{\circ}$ or $x = a$ and $y = -16$ to find the gradient                                                                      |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | from differentiation that yielded 2 terms in $\frac{dy}{dx}$                                                                                           |                                                                                                                                                                                                                                                                                 |             |  |  |  |
|       | $y+16 = \frac{3}{4}(x-"6")$<br>or<br>$y+16 = \frac{a}{8}(x-"6")$<br>$x = 0 \Longrightarrow y = -\frac{41}{2},  y = 0 \Longrightarrow x = \frac{82}{3}$ | Correct straight line method using a gradient which is <b>not</b> the radius gradient and their <i>A</i> or $(a, -16)$ . Allow a gradient in terms of <i>a</i> .                                                                                                                | M1          |  |  |  |
|       | $x = 0 \Longrightarrow y = -\frac{41}{2}, y = 0 \Longrightarrow x = \frac{82}{3}$                                                                      | Correct values                                                                                                                                                                                                                                                                  | A1          |  |  |  |
|       | Area = $\frac{1}{2} \times \frac{41}{2} \times \frac{82}{3}$                                                                                           | Correct method for area using<br>vertices of the form $(0, 0)$ , $(X, 0)$ and<br>(0, Y) where X and Y are numeric and<br>have come from the intersections of<br>their tangent with the axes. Allow<br>negative lengths here. <b>Dependent on</b><br><b>the previous M mark.</b> | <b>d</b> M1 |  |  |  |
|       | $=\frac{1681}{6} \text{ or } 280\frac{1}{6}$<br>or 280.16 (clear dot over 6)                                                                           | Cao. Must be <b>positive</b> and may be<br>recovered from sign errors on $-\frac{41}{2}$<br>and/or $\frac{82}{3}$ but must be from a<br>correct tangent equation.                                                                                                               | A1          |  |  |  |
|       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                 | (7)         |  |  |  |
|       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                 | Total 11    |  |  |  |

| Question<br>Number | Scheme                                                                                       | Notes                                                                                                        | Marks |
|--------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|
| 15(a)              | $(\operatorname{Arc}\operatorname{length}=)0.8x$                                             | Correct expression                                                                                           | B1    |
|                    | P = 2x + 4y + 0.8x                                                                           | $P = \alpha x + \beta y + "0.8x",  \alpha, \beta \neq 0$                                                     | M1    |
|                    | This may be implied by e.g. P                                                                | x = 2x + 4 (their y) + 0.8x                                                                                  |       |
|                    | $2xy + \frac{1}{2}(0.8)x^2 = 60$                                                             | Correct equation for the area                                                                                | B1    |
|                    | $y = \frac{60 - 0.4x^2}{2x} \Longrightarrow P = 4\left(\frac{60 - 0.4x^2}{2x}\right) + 2.8x$ | Makes <i>y</i> the subject and substitutes                                                                   | M1    |
|                    | $P = \frac{120}{x} + 2x^*$                                                                   | Obtains printed answer with no errors<br>with $P = \dots$ or Perimeter = $\dots$<br>appearing at some point. | A1*   |
|                    | Note that it is sufficient to go from $P = 4$                                                | $\left(\frac{60-0.4x^2}{2x}\right) + 2.8x \text{ to } P = \frac{120}{x} + 2x^*$                              |       |
|                    |                                                                                              |                                                                                                              | (5)   |

| 15(b) | Mark (b) and (c) together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
|       | Allow e.g. $\frac{dy}{dx}$ for $\frac{dP}{dx}$ and/or $\frac{d^2y}{dx^2}$ for $\frac{d^2P}{dx^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|       | $dx dx dx^2 dx^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|       | $\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{120}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct derivative                                                                                                                                                                                                                                                                                                       | B1              |  |  |  |
|       | $2 - \frac{120}{x^2} = 0 \Longrightarrow x = \sqrt{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{dP}{dx} = 0 \text{ and solves for } x. \text{ Must be fully}$<br>correct algebra for their $\frac{dP}{dx} = 0$ which<br>is solvable.                                                                                                                                                                              | M1              |  |  |  |
|       | $P = \frac{120}{\sqrt{60}} + 2\sqrt{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Substitutes into <i>P</i> , a <b>positive</b> <i>x</i> which<br>has come from an attempt to solve<br>their $\frac{dP}{dx} = 0$                                                                                                                                                                                           | M1              |  |  |  |
|       | $P = 4\sqrt{60} \text{ or } 8\sqrt{15} \text{ or } \sqrt{960}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Correct exact answer. Cso.                                                                                                                                                                                                                                                                                               | A1              |  |  |  |
|       | Note that if $\frac{dP}{dx} = 2 + \frac{120}{x^2}$ is obtained, this co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ould score a maximum of B0M0M1A0                                                                                                                                                                                                                                                                                         |                 |  |  |  |
|       | if a positive value of x is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s substituted into <i>P</i> .                                                                                                                                                                                                                                                                                            |                 |  |  |  |
| (c)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | (4)             |  |  |  |
|       | $\left(\frac{d^2 P}{dx^2}\right) = \frac{240}{x^3} = \frac{240}{\left(\sqrt{60}\right)^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Attempts the second derivative $x^n \rightarrow x^{n-1}$ seen at least once<br>(allow $k \rightarrow 0$ as evidence) and then<br>substitutes at least one <b>positive</b> value<br>of x from their $\frac{dP}{dx} = 0$ or makes<br>reference to the sign of the second<br>derivative provided they have a<br>positive x. | M1              |  |  |  |
|       | $\left(\frac{d^2 P}{dx^2}\right) = \frac{240}{\left(\sqrt{60}\right)^3} \Rightarrow \frac{d^2 P}{dx^2} > 0 \therefore \text{ minimum}$ Requires a <b>correct second derivative</b> and the <b>correct value of </b> <i>x</i> . There must be a reference to the sign of the second derivative.<br>If <i>x</i> is substituted and then $\frac{d^2 P}{dx^2}$ is evaluated incorrectly allow this mark if the other conditions are met.<br>If <i>x</i> is not substituted then the reference to $\frac{d^2 P}{dx^2}$ being positive must also include a reference to the fact that <i>x</i> is positive.<br>Allow alternatives e.g. considers <b>values</b> of <i>P</i> either side of $\sqrt{60}$ or |                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|       | <b>values</b> of $\frac{dP}{dx}$ either side of $\sqrt{60}$ can score M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |                 |  |  |  |
|       | and then A1 if a full <b>reason</b> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and conclusion is given.                                                                                                                                                                                                                                                                                                 |                 |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | (2)<br>Tatal 11 |  |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | Total 11        |  |  |  |

| Question<br>Number | Scheme                                                                                                              | Notes                                                                                                                                                                  | Marks       |
|--------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 16(a)              | Examples:<br>$\frac{2k-24}{k} = \frac{k}{k+5}$ or<br>$\frac{k+5}{k} = \frac{k}{2k-24}$ or<br>$(2k-24)(k+5) = k^{2}$ | Correct method. I.e. a method that uses the fact that the 3 terms are in geometric progression to establish an equation in $k$ .                                       | M1          |
|                    | $(2k-24)(k+5) = 2k^2 - 14k - 120$                                                                                   | Expands $(2k-24)(k+5)$ .<br>Must be an attempt at the full<br>expansion but allow the <i>k</i> terms to<br>be combined.<br><b>Dependent on the first M</b> .           | <b>d</b> M1 |
|                    | $2k^2 - 14k - 120 = k^2 \Longrightarrow k^2 - 14k - 120 = 0^*$                                                      | Correct solution with no errors<br>including bracketing errors e.g.<br>2k - 24(k+5) =                                                                                  | A1*         |
|                    |                                                                                                                     |                                                                                                                                                                        | (3)         |
| (b)                | $(k+6)(k-20) = 0 \Longrightarrow k = \dots$                                                                         | Attempts to solve the given quadratic. See General Guidance.                                                                                                           | M1          |
|                    | k = -6, 20                                                                                                          | Correct values                                                                                                                                                         | A1          |
|                    |                                                                                                                     |                                                                                                                                                                        | (2)         |
| (c)(i)             | $r = \frac{"20"}{"20"+5}$ or $r = \frac{2 \times "20"-24}{"20"}$                                                    | Correct attempt at <i>r</i> . Allow this to score for any of their <i>k</i> values.                                                                                    | M1          |
|                    | $r = \frac{4}{5}$ oe                                                                                                | Correct <i>r</i> from using $k = 20$ .<br>Allow this mark even if the<br>'other' value of <i>r</i> is also<br>calculated.<br>Allow unsimplified e.g. $\frac{20}{20+5}$ | A1          |
| (ii)               | $a = "20" + 5 \Longrightarrow S_{\infty} = \frac{"25"}{1 - "\frac{4}{5}"}$                                          | Attempts to find <i>a</i> and $S_{\infty}$ with $ r  < 1$                                                                                                              | M1          |
|                    | $S_{\infty} = 125$                                                                                                  | Cao with no other values – if<br>other values are found they must<br>be clearly rejected and 125<br>"chosen".                                                          | A1          |
|                    |                                                                                                                     |                                                                                                                                                                        | (4)         |
|                    |                                                                                                                     |                                                                                                                                                                        | Total 9     |