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1. The first three terms in ascending powers of x in the binomial expansion ¢

; (1 + px)® are given by

| I+ 12x¢ + g2
I

where p and ¢ are constants.

; Find the value of p and the value of g.
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2. Find the range of values of x for which

(@) 4x-2)< 2x+ 1
L) 2x=-3)x+5>0

(c) both4(x-2)< 2x+ land 2x-3)(x+5)>0
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3. Answer this question without a calculator, showing all your working and giving
your answers in their simplest form.

(i) Solve the equation

42041 = gix
(3)
(i) (a) Express
318 - V32
in the form k2 , where k is an integer. @
(b) Hence, or otherwise, solve
3Vi8 - 32 = n 5
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Figure 1

Figure | shows a sketch of part of the curve with equation y = Vx+2, x 2 -2

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and
the linex=6

The table below shows corresponding values of x and y for y = Vx + 2

; x -2 0 2 4 6
| 2 9 .4%ds5

(a) Complete the table above, giving the missing value of y to 4 decimal places.

2.8284

¥y 0 1.4142

(1)

(b) Use the trapezium rule, with all of the values of y in the completed table. to find an
approximate value for the area of R, giving your answer to 3 decimal places.

3)

Use your answer to part (b) to find approximate values of

© (i) J “'2” dx

(..)J. (2+Vx+2)dv
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Question 4 continued
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Given U, = 4, find

(a) U: )

100

(b) DU,

(2)
(i1) Given
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> (100 -3r) <0
r=1

| find the least value of the positive integer n. 3)
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6. (a) Show that -; ™ 4 .an be written in the form Ax? + Bx9, where 4, B.pand g

VX

are constants to be determined.

(3)
(b) Hence find

J.:\' ~4d.r, x>0
2x

giving vour answer in its simplest form.
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1

f(x) = 3x* + ax? + bx — 10, where @ and b are constants.
Given that (x — 2) is a factor of f(x),

(a) use the factor theorem to show that 2a + b=-1

(2)
Given also that when f(x) is divided by (x + 1) the remainder is 36

(b) find the value of « and the value of b. @)

f(x) can be written in the form
f(x) = (x - 2)Q(x), where Q(x) is a quadratic function.
(¢) (i) Find Q(x). -
(ii) Prove that the equation f(x) = 0 has only one real root.

You must justify your answer and show all your working.
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8. In this question the angle @ is measured in degrees throughout.

(a) Show that the equation

may be rewritten as

(3)
(b) Hence solve, for —90° < 0 < 90°, the equation
5+ siné  PEskl
3cosd
Give your answers to one decimal place, where appropriate.
4

K(o\ 5 +5In0
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5+ sin@
3cos0

= 2cosd, 0#(2n+1)90°, neZ

6sin’0 +sinf-1=0
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9. The first term of a geometric series is 6 and the common L

For this series, find

(a) (i) the 25" term, giving your answer to 2 significant figures, -

(ii) the sum to infinity. 4

The sum to » terms of this series is greater than 72

(b) Calculate the smallest possible value of 7.
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10. The curve €' has equation y = sm[x ¥ I], Ocxs e

[
! }ﬂ
(a) On the axes below, sketch the curve C. . )

(b) Write down the exact coordinates of all the points at w hich the curve
meets or intersects the x-axis and the y-axis. 3)

(c) Solve, for 0 < x < 2, the equation

sin(.r + E] = -1@

4 2

VIUY SIHENI ZUEM IONDG .

giving your answers in the form kz, where k is a rational number.
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Figure 2
Figure 2 shows the design for a sail APBCA.
The curved edge APB of the sail is an arc of a circle centre O and radius r m.
The straight edge ACB is a chord of the circle.
The height 4B of the sail is 2.4 m.
The maximum width CP of the sail is 0.4 m.
(a) Show that r =2
(2)
(b) Show. to 4 decimal places, that angle AOB = 1.2870 radians. _
()
(c) Hence calculate the area of the sail, giving your answer, in m?, to 3 decimal places.
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Figure 3

Figure 3 shows a circle C

C touches the y-axis and has centre at the point (a, 0) where a is a positive
constant.

(a) Write down an equation for C in terms of a

(2)
Given that the point P(4, —3) lies on C,
(b) find the value of a
3)
L - .
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13. (a) Show that the equation

2log,y=5-log, x x>0,y>0

: ‘ i k .
may be written in the form y* = — where k is a constant to be found.
X

(b) Hence, or otherwise, solve the simultancous equations
2log, y = 5—log, x

forx>0,y>0

Bl). 2y y = S-log, o
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S(4.10)
=g(x)

P(-3,4) e—{ 0(0,4)

A

=Y

R(2,0)

Figure 4

Figure 4 shows a sketch of the graph of y = g(x), =3 < x < 4 and part of the
line [ with equation y = %x

The graph of y = g(x) consists of three line segments, from P(=3,4) to Q(0,4), from
0(0,4) to R(2.0) and from R(2.0) to S(4.10).

The line I intersects y = g(x) at the points A and B as shown in Figure 4.

(a) Use algebra to find the x coordinate of the point A and the x coordinate of
the point B.

Show each step of your working and give your answers as exact fractions.

(6)
(b) Sketch the graph with equation

y=%g(x), -3<x<4

On your sketch show the coordinates of the points to which P, O, Rand §
are transformed.

(2)
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Figure 5

Figure 5 shows a design for a water barrel.
It is in the shape of a right circular cylinder with height / cm and radius r cm.

The barrel has a base but has no lid, is open at the top and is made of material of
negligible thickness.

The barrel is designed to hold 60000 cm? of water when full.

(a) Show that the total external surface area, S cm?, of the barrel is given by
the formula

&) V= T*h = 60000 o h= 6092

, 120000
= +
¥
3)
(b) Use calculus to find the minimum value of S, giving your answer to 3 significant
figures. )
(6)

(c) Justify that the value of S you found in part (b) is a minimum.

R TN LT N

RS (e o 000

ol
//: rWW~ 5

y3uY SIHLNIZLNM 10N 0T

*::'f’z‘;*;;f"-'&aafd.s;m-maiwmmra 0a-. 3 SEXS

e ST LN LM LONOT

I !q@u.@m@ugamswmer

PMT

A

-~



~. DONOTWRITE IN THIS AREA

o MO NOTWRITE IN THIS AREA

b
Leave

blank

L) &S - 2qp -no0OOLT*
o R, A TS

I
r
!
|
|
|
|

(c) 25 - 72 “o0oor -

Questionl5 continued

. eat—(0000 =D ..

—-

N A 2 T 7
i / e M

i 21+ 240000 (2693-.) ©

(!

= 6m =S

7 A z’i)._-? j.',_.-_7_o T - = 6?3.0
S A N NN n_(,_;-::;"__ s

Q5

PMT

(Total 5 marks)

|

e o o o G aRREDyY CamScanner 3



16,

VA

0

Y E

I
i
2z

Figure 6
Figure 6 shows a sketch of part of the curve C with equation
y=x(x—1)(x-2)
The point P lies on C and has x coordinate %
The line /, as shown on Figure 6, is the tangent to C at P.
%
(a) Find E;

(b) Use part (a) to find an equation for  in the form ax + by =c, where a, b and ¢
are integers.

The finite region R, shown shaded in Figure 6, is bounded by the line /, the
curve C and the x-axis.

The line { meets the curve again at the point (2, 0)

(c) Use integration to find the exact area of the shaded region R.

C). 9= A3+ 0 '_
‘9” SR "G}tl R
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