| Surname                                              | Other r       | names                    |
|------------------------------------------------------|---------------|--------------------------|
| Pearson Edexcel International Advanced Level         | Centre Number | Candidate Number         |
| Mechanica<br>Advanced/Advance                        | <u> </u>      |                          |
| 1                                                    |               |                          |
| Tuesday 24 January 2017 –<br>Time: 1 hour 30 minutes | Morning       | Paper Reference WME02/01 |

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

## Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
   there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s<sup>-2</sup>, and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

## Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
   use this as a quide as to how much time to spend on each question.

## **Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 8 3 2 8 A 0 1 2 8

Turn over ▶



| 1. | A car of mass 1200 kg moves up a straight road. The road is inclined to the horizontal at                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | an angle $\alpha$ where $\sin \alpha = \frac{1}{15}$ . The car is moving up the road with constant speed 10 m s <sup>-1</sup>                                 |
|    | and the engine of the car is working at a constant rate of $11760$ watts. The non-gravitational resistance to motion has a constant magnitude of $R$ newtons. |

(a) Find the value of R.

**(4)** 

The rate of working of the car is now increased to 50 kW. At the instant when the speed of the car is  $V \, \text{m s}^{-1}$ , the magnitude of the non-gravitational resistance to the motion of the car is 700 N and the acceleration of the car is 1.5 m s<sup>-2</sup>.

| (b) Find the value of V | Find the | value of | V. |
|-------------------------|----------|----------|----|
|-------------------------|----------|----------|----|

| 1 |     |  |
|---|-----|--|
|   | 6 I |  |
| ı | v   |  |

|  |  |  | (0 |
|--|--|--|----|
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |

|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 1 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



DO NOT WRITE IN THIS AREA

2.



Figure 1

A uniform lamina is in the shape of a trapezium ABCD with AB = a, DA = DC = 2a and angle BAD =angle  $ADC = 90^{\circ}$ , as shown in Figure 1.

The centre of mass of the lamina is at the point G.

- (a) (i) Show that the distance of G from AB is  $\frac{10a}{9}$ .
  - (ii) Find the distance of G from AD.

**(6)** 

The mass of the lamina is 3M. A particle of mass kM is now attached to the lamina at B. The lamina is freely suspended from the midpoint of AD and hangs in equilibrium with AD horizontal.

**(3)** 

|                      |     | $\overline{}$ |
|----------------------|-----|---------------|
|                      | Lea | ave           |
|                      | bla | ınk           |
| Question 2 continued |     |               |
| Question 2 continued |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |
|                      |     |               |



| 3. | A particle $P$ moves along a straight line. At time $t = 0$ , $P$ passes the point $A$ on the line and at time $t$ seconds the velocity of $P$ is $v$ m s <sup>-1</sup> where |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | v = (2t - 3)(t - 2)                                                                                                                                                           |
|    | At $t = 3$ , $P$ reaches the point $B$ . Find the total distance moved by $P$ as it travels from $A$ to $B$ .                                                                 |
|    | (6)                                                                                                                                                                           |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |
|    |                                                                                                                                                                               |

| 4. | A particle $P$ of mass 0.2 kg is moving with velocity $(20\mathbf{i} - 16\mathbf{j})$ m s <sup>-1</sup> when it receives an impulse $(-6\mathbf{i} + 8\mathbf{j})$ N s.          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) Find the speed of <i>P</i> immediately after it receives the impulse. (5)                                                                                                    |
|    |                                                                                                                                                                                  |
|    | (b) Find the size of the angle between the direction of motion of <i>P</i> before the impulse is received and the direction of motion of <i>P</i> after the impulse is received. |
|    | (4)                                                                                                                                                                              |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |
|    |                                                                                                                                                                                  |

- Two particles P and Q, of masses 2m and 3m respectively, are moving in opposite directions along the same straight line on a smooth horizontal plane. The particles collide directly and, as a result of the collision, the direction of motion of P is reversed and the direction of motion of Q is reversed. Immediately after the collision, the speed of P is V and the speed of Q is  $\frac{3v}{2}$ . The coefficient of restitution between P and Q is  $\frac{1}{5}$ .
  - (a) Find
    - (i) the speed of P immediately before the collision,
    - (ii) the speed of Q immediately before the collision.

**(7)** 

After the collision with P, the particle Q moves on the plane and strikes at right angles a fixed smooth vertical wall and rebounds. The coefficient of restitution between Q and the wall is e. Given that there is a further collision between the particles,

(b) find the range of possible values of e.

| 13 | 1 |
|----|---|
| w  | ١ |
|    |   |



|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 5 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



| 6. | A ball of mass $0.6 \mathrm{kg}$ is projected vertically upwards with speed $22.4 \mathrm{ms^{-1}}$ from a point which is $1.5 \mathrm{m}$ above horizontal ground. The ball moves freely under gravity until it reaches the ground. The ground is soft and the ball sinks $2.5 \mathrm{cm}$ into the ground before coming to rest. The ball is modelled as a particle and the ground is assumed to exert a constant resistive force of magnitude $R$ newtons on the ball. Using the work-energy principle, find, to 3 significant figures, the value of $R$ . |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Figure 2

A uniform rod AB has mass m and length 2a. The end A is in contact with rough horizontal ground and the end B is in contact with a smooth vertical wall. The rod rests in equilibrium in a vertical plane perpendicular to the wall and makes an angle of  $30^{\circ}$  with the wall, as shown in Figure 2. The coefficient of friction between the rod and the ground is  $\mu$ .

(a) Find, in terms of m and g, the magnitude of the force exerted on the rod by the wall.

(b) Show that 
$$\mu \geqslant \frac{\sqrt{3}}{6}$$
. (3)

A particle of mass km is now attached to the rod at B. Given that  $\mu = \frac{\sqrt{3}}{5}$  and that the rod is now in limiting equilibrium,

(c) find the value of k.

(6)



DO NOT WRITE IN THIS AREA

|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 7 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |



| 8. | At time $t = 0$ seconds, a golf ball is hit from a point $O$ on horizontal ground. The                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------|
|    | horizontal and vertical components of the initial velocity of the ball are $3U \mathrm{m  s^{-1}}$ and                      |
|    | $U \mathrm{m}\mathrm{s}^{-1}$ respectively. The ball hits the ground at the point A, where $OA = 120 \mathrm{m}$ . The ball |
|    | is modelled as a particle moving freely under gravity.                                                                      |
|    |                                                                                                                             |
|    |                                                                                                                             |

(a) Show that U = 14

**(5)** 

(b) Find the speed of the ball immediately before it hits the ground at A.

**(2)** 

(c) Find the values of t when the ball is moving at an angle  $\alpha$  to the horizontal, where  $\tan \alpha = \frac{1}{4}$ .

**(6)** 

|                      | Leave |
|----------------------|-------|
|                      | blank |
| Question 8 continued |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |
|                      |       |

