

## Mark Scheme (Results)

October 2017

Pearson Edexcel International A Level in Mechanics M1 (WME01/01)



## **General Principles for Mechanics Marking**

| Question<br>Number | Scheme                                                                                                                                                                                                                    | Marks       | 6   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 1                  | $T\cos 70^{\circ} + R = 40g$                                                                                                                                                                                              | M1A1        |     |
|                    |                                                                                                                                                                                                                           | M1A1        |     |
|                    | $T\cos 20^{\circ} = F$ $F = \frac{3}{4}R$                                                                                                                                                                                 | B1          |     |
|                    | Eliminate <i>R</i> and solve for <i>T</i>                                                                                                                                                                                 | <b>DM</b> 1 |     |
|                    | T = 250  N or 246 N                                                                                                                                                                                                       | A1          |     |
|                    |                                                                                                                                                                                                                           |             | 7   |
|                    | Notes                                                                                                                                                                                                                     |             |     |
| 1                  | Notes First M1 for resolving vertically with usual rules (must be using either                                                                                                                                            |             |     |
| 1                  | 20° or 70°) First A1 for a correct equation Second M1 for resolving horizontally with usual rules (must be using either 20° or 70°)                                                                                       |             |     |
|                    | Second A1 for a correct equation                                                                                                                                                                                          |             |     |
|                    | B1 for $F = \frac{3}{4}R$ seen (could be on a diagram)                                                                                                                                                                    |             |     |
|                    | Third DM1 dependent on previous two M marks Third A1 for either 250 (N) or 246 (N)                                                                                                                                        |             |     |
|                    |                                                                                                                                                                                                                           |             |     |
| 2a                 | $M(D)$ , $(1080 \times 1) - (400 \times 2) = R_C \times 3.5$                                                                                                                                                              | M1 A1       |     |
|                    | $R_C = 80 \text{ (N)}$                                                                                                                                                                                                    | A1          |     |
|                    | $M(C)$ , $(1080 \times 2.5) + (400 \times 5.5) = R_D \times 3.5$                                                                                                                                                          | M1A1        |     |
|                    | $R_D = 1400 \text{ (N)}$                                                                                                                                                                                                  | A1          | (6) |
|                    | OR $(\uparrow) R_C + R_D = 1480$                                                                                                                                                                                          | M1A1        |     |
| 2b                 | $R_C + (R_C + 520) = 1480$ OR $R_D + (R_D - 520) = 1480$                                                                                                                                                                  | M1 A1       |     |
|                    | $M(D)$ , $(1080 \times 1) - 400(x-4) = R_C \times 3.5$                                                                                                                                                                    | M1 A1       |     |
|                    | x = 2.5                                                                                                                                                                                                                   | A1          | (5) |
|                    | NT - 4                                                                                                                                                                                                                    |             | 11  |
| 2a                 | Notes First M1 for a moments equation or a vertical resolution                                                                                                                                                            |             |     |
| Za                 | First M1 for a moments equation of a vertical resolution<br>First A1 for a correct equation ( $R_C$ and/or $R_D$ do NOT need to be<br>substituted but if one is, it can be their value found from a previous<br>equation) |             |     |

| Question<br>Number | Scheme                                                                                     | Marks    | , |
|--------------------|--------------------------------------------------------------------------------------------|----------|---|
|                    | Second A1 for $R_c = 80$ (N)                                                               |          |   |
|                    | Second M1 for a moments equation or a vertical resolution                                  |          |   |
|                    | Third A1 for a correct equation ( $R_C$ and/or $R_D$ do NOT need to be                     |          |   |
|                    | substituted but if one is, it can be their value found from a previous                     |          |   |
|                    | equation)                                                                                  |          |   |
|                    | Fourth A1 for $R_D = 1400$ (N)                                                             |          |   |
|                    | Enter marks for equations on ePEN, in the order they appear                                |          |   |
|                    | First M1 for a moments equation or a vertical resolution                                   |          |   |
| <b>2</b> b         | First A1 for a correct equation ( $R_C$ and/or $R_D$ do NOT need to be                     |          |   |
|                    | substituted but if one is, it can be their value found from a previous                     |          |   |
|                    | equation)                                                                                  |          |   |
|                    | Second M1 for a moments equation or a vertical resolution                                  |          |   |
|                    | Second A1 for a correct equation ( $R_C$ and/or $R_D$ do NOT need to be                    |          |   |
|                    | substituted but if one is, it can be their value found from a previous                     |          |   |
|                    | equation) Third A1 for $x = 2.5$                                                           |          |   |
|                    | Enter marks for equations on ePEN, in the order they appear                                |          |   |
|                    | <b>N.B.</b> Equations may contain any or all of $R_C$ , $R_D$ or $x$ for M marks but       |          |   |
|                    | must contain only <b>one</b> of $R_C$ or $R_D$ to earn the A mark.                         |          |   |
|                    | <b>N.B.</b> If they assume that $R_D = 520$ , they lose all the marks for part (b).        |          |   |
|                    | <b>N.B</b> If they start with $2R = 1480$ and then add or subtract (or both) 520           |          |   |
|                    | to their R value, M0.                                                                      |          |   |
|                    | <b>N.B.</b> If brackets are omitted in a moments equation e.g. $(520 + R_C).4$ is          |          |   |
|                    | written as $520 + R_C.4$ , the M mark can be scored                                        |          |   |
|                    |                                                                                            |          |   |
|                    |                                                                                            |          |   |
| 2                  |                                                                                            | 3.61.4.1 |   |
| 3                  | 8mu - 4mu = 5mv                                                                            | M1A1     |   |
|                    | $v = 0.8u$ For $D_1 = A_{10}(0.8u, 2u)$                                                    | A1       |   |
|                    | For $P: -I = 4m(0.8u - 2u)$                                                                | M1 A1    |   |
|                    | I = 4.8mu                                                                                  | A1       |   |
|                    | <b>OR</b> For <i>Q</i> : $I = m(0.8u + 4u)$                                                | M1 A1    |   |
|                    |                                                                                            |          |   |
|                    | I = 4.8 mu                                                                                 | A1       |   |
|                    |                                                                                            |          | 6 |
|                    | Notes                                                                                      |          | v |
|                    | First M1 for CLM with correct no. of terms, all dimensionally correct, to give             |          |   |
| _                  | an equation in $m$ , $u$ and their $v$ only. Condone consistent $g$ 's or cancelled $m$ 's |          |   |
| 3                  | and sign errors.                                                                           |          |   |
|                    | (N.B. The CLM equation could be obtained by equating the magnitudes of the                 |          |   |
|                    | impulses on each particle) First A1 for a correct equation (they may have - 5mv)           |          |   |
|                    | Second A1 for $0.8u$ or $-0.8u$ (as appropriate)                                           |          |   |
|                    | Second M1 for using Impulse = Change in Momentum for either $P$ or $Q$                     |          |   |
|                    | (M0 if <i>clearly</i> adding momenta or if $g$ is included or if different mass in the     |          |   |
|                    | two momentum terms) but condone sign errors.                                               |          |   |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                    | Third A1 for $4m(0.8u-2u)$ or $-4m(0.8u-2u)$<br>OR for $m(0.8u+4u)$ or $-m(0.8u+4u)$<br>Fourth A1 for $4.8mu$ (must be positive since magnitude)                                                                                                                                                                                                                                                                                                                                                                    |           |
| <b>4</b> (i)       | $ \mathbf{F}_2 ^2 = 8^2 + 14^2 - 2 \times 8 \times 14 \cos 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1     |
| ,                  | Solve for $ \mathbf{F}_2  = 8.1$ (N) or better                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1 (4) |
|                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ` ` `     |
|                    | OR: $ \frac{ \mathbf{F}_2  \cos \alpha = 14 \cos 30 - 8}{ \mathbf{F}_2  \sin \alpha = 14 \sin 30} $                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1     |
|                    | Solve for $ \mathbf{F}_2  = 8.1$ (N) or better                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1 (4) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| <b>4(ii)</b>       | $\frac{\sin \theta}{8} = \frac{\sin 30}{8.12467} \text{ or } \frac{\sin \phi}{14} = \frac{\sin 30}{8.12467}$                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1     |
|                    | Solve: $\theta = 29.49^{\circ}$ or $\phi = 120.51^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 A1     |
|                    | Bearing is 149° (nearest degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 (5)    |
|                    | OR: $ \frac{ \mathbf{F}_2 \cos\alpha = 14\cos 30 - 8 = 4.124(355.)}{ \mathbf{F}_2 \sin\alpha = 14\sin 30} $                                                                                                                                                                                                                                                                                                                                                                                                         | M1 A1     |
|                    | Solve: $\alpha = 59.49^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1 A1     |
|                    | Bearing is 149° (nearest degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1 (5)    |
| _                  | NT-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 4(i)               | Notes  First M1 for use of cos rule with 30°                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                    | First A1 for a correct equation <b>OR:</b> First M1 for 'resolving' in 2 directions with $30^{\circ}/60^{\circ}$ ( <b>N.B.</b> M0 here if cos/sin confused)  First A1 for TWO correct equations  Second M1 for solving for $ \mathbf{F}_2 $ , independent but must be solving a 'correct cosine formula but with wrong angle' if using method 1 <b>OR</b> for eliminating $\alpha$ from two equations, independent but equations must have the correct structure if using method 2  Second A1 for 8.1 (N) or better |           |
| 4(ii)              | First M1 for use of sin rule with 30° First A1 for a correct equation (allow 8.12 or better)  OR: First M1 for 'resolving' in 2 directions with 30° / 60°                                                                                                                                                                                                                                                                                                                                                           |           |

| Question<br>Number | Scheme                                                                                                                                              | Mark        | S   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
|                    | First A1 for TWO correct equations (allow 4.12 or better)                                                                                           |             |     |
|                    | Second M1, independent, for solving a 'correct sine formula' for $\phi$                                                                             |             |     |
|                    | <b>OR</b> independent for solving two equations, with correct structure, for $\alpha$                                                               |             |     |
|                    | Second A1 for $\theta = AWRT 29^o$ or $\phi = AWRT 121^o$                                                                                           |             |     |
|                    | OR $\alpha = AWRT 59^{\circ}$                                                                                                                       |             |     |
|                    | Third A1 for Bearing is 149° (nearest degree)                                                                                                       |             |     |
|                    | <b>N.B.</b> First M1A1 Could use cos rule to find an angle                                                                                          |             |     |
|                    | <b>N.B.</b> If the resolving method is used and there are no (i) or (ii) labels, only award M1A1 in both cases when an answer is reached.           |             |     |
|                    |                                                                                                                                                     |             |     |
| 5a                 | $0 = 14.7^2 - 2 \times 9.8h$                                                                                                                        | M1A1        |     |
|                    | h=11.025                                                                                                                                            | A1          |     |
|                    | max ht = 13.5 or 14 (m)                                                                                                                             | A1          | (4) |
|                    |                                                                                                                                                     |             |     |
| 5b                 | $-1.5 = 14.7t - 4.9t^2$                                                                                                                             | M1A1        |     |
|                    | $4.9t^2 - 14.7t - 1.5 = 0$                                                                                                                          |             |     |
|                    | $-1.3 = 14.7t - 4.9t$ $4.9t^{2} - 14.7t - 1.5 = 0$ $t = \frac{14.7 \pm \sqrt{14.7^{2} + 6 \times 4.9}}{9.8}$ $t = 3.1 \text{ or } 3.10 \text{ (s)}$ | <b>DM</b> 1 |     |
|                    | 9.8                                                                                                                                                 | DIVII       |     |
|                    | t = 3.1  or  3.10  (s)                                                                                                                              | A1          | (4) |
|                    |                                                                                                                                                     |             |     |
| 5c                 | $v^2 = 14.7^2 + 2 \times (-9.8) \times (-2.5)$                                                                                                      | M1 A1       |     |
|                    | $v = 16.3 \text{ or } 16 \text{ (m s}^{-1})$                                                                                                        | A1          | (3) |
|                    |                                                                                                                                                     |             | 11  |
|                    | Notes                                                                                                                                               |             |     |
| 5a                 | <b>N.B.</b> If they use $g = 9.81$ , lose first A mark (once for whole question)                                                                    |             |     |
|                    | but all other A marks can be scored.                                                                                                                |             |     |
|                    | First M1 for a complete method to find the height (Could involve two <i>suvat</i> equations) condone sign errors.                                   |             |     |
|                    | First A1 for a correct equation (or equations)                                                                                                      |             |     |
|                    | Second A1 for $h = 11$ (may be unsimplified) or better (For other                                                                                   |             |     |
|                    | methods, give this A1 for any correct (may be unsimplified)                                                                                         |             |     |
|                    | intermediate answer)                                                                                                                                |             |     |
|                    | Third A1 for 13.5 or 14 (m)                                                                                                                         |             |     |
| 5b                 | First M1 for a complete method to find the required time (they may find                                                                             |             |     |
|                    | the time up (1.5 s) and then add on the time down. Condone sign errors First A1 for a correct equation or equations                                 |             |     |
|                    | Second DM1, dependent, for solving to find required time                                                                                            |             |     |
|                    | Second A1 for 3.1 or 3.10 (s)                                                                                                                       |             |     |
| <u> </u>           | 1 (*)                                                                                                                                               | i .         |     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                             | Marks                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 5c                 | First M1 for a complete method to find the speed / velocity(Could involve two <i>suvat</i> equations) Condone sign errors but must have correct numbers in their equation(s) First A1 for a correct equation (or equations) Second A1 for 16 or 16.3 (m s <sup>-1</sup> ) Must be <i>positive</i> ( <i>speed</i> ) |                        |
| <b>6</b> a         | V 270                                                                                                                                                                                                                                                                                                              | B1 shape B1 270, V (2) |
| 6b                 | $\frac{V}{0.6} = \frac{5V}{3}$ Given answer                                                                                                                                                                                                                                                                        | M1A1 (2)               |
| 6с                 | Time decelerating is $5V$ $\frac{1}{2}V\frac{5V}{3} + (270 - 5V - \frac{5V}{3})V + \frac{1}{2}V.5V = 1500$                                                                                                                                                                                                         | B1<br>M1 A2            |
|                    | OR: $\frac{1}{2}(270 + 270 - 5V - \frac{5V}{3})V = 1500$ $V^2 - 81V + 450 = 0 \qquad \text{Given answer}$                                                                                                                                                                                                          | <b>DM1</b> A1 (6)      |
| 6d                 | $V^{2} - 81V + 450 = 0$ $(V - 6)(V - 75) = 0$ or $V = \frac{81 \pm \sqrt{81^{2} - 4 \times 450}}{2}$ $V = 6 \text{ or } 75$                                                                                                                                                                                        | M1 solving A1 A1       |
|                    | $V = 6 \text{ or } 75$ $V = 6 \text{ since } (5 \times 75) > 270 \text{ or } V = 75 \text{ unrealistic}$                                                                                                                                                                                                           | B1 (4)<br>14           |
|                    | Notes                                                                                                                                                                                                                                                                                                              | 1.                     |
| 6a                 | First B1 for a trapezium with line starting at the origin Second B1 for 270 and <i>V</i> correctly marked                                                                                                                                                                                                          |                        |
| 6b                 | M1 for $(t =) \frac{V}{0.6}$ ; N.B. M1A0 for $V$ =0.6 $t$ then answer  Must see division or intermediate step from $V$ =0.6 $t$ e.g. Changing 0.6 into 3/5.  A1 for $t = \frac{5V}{3}$ Given answer                                                                                                                |                        |

| Question<br>Number | Scheme                                                                                                                                                                                                                   | Mari  | ks        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 6c                 | B1 for 5V identified appropriately First M1 for clear attempt to equate the <i>total</i> area under graph to 1500.                                                                                                       |       |           |
|                    | (Must include all 3 parts (if not using the trapezium rule) with $\frac{1}{2}$ seen at                                                                                                                                   |       |           |
|                    | least once to give equation in $V$ only; may use (1 triangle + 1 trapezium) or (rectangle - trapezium)                                                                                                                   |       |           |
|                    | (May use <i>suvat</i> for one or more parts of the area)                                                                                                                                                                 |       |           |
|                    | A2 for a correct equation, -1 e.e.o.o.  Second <b>DM</b> 1 dependent on first M1 for multiplying out and collecting terms and putting into appropriate form                                                              |       |           |
|                    | Third A1 for correct equation. Given answer                                                                                                                                                                              |       |           |
| 6d                 | First M1 for solving their 3 term quadratic equation for $V$ N.B. This M1 can be implied by two correct roots but if either answer incorrect then an explicit method must be shown for this M mark. First A1 for $V = 6$ |       |           |
|                    | Second A1 for $V = 75$<br>B1 on ePEN but treat as <b>DM</b> 1, dependent on both previous A marks, for                                                                                                                   |       |           |
|                    | either reason                                                                                                                                                                                                            |       |           |
|                    |                                                                                                                                                                                                                          |       |           |
| 7a                 | $T - 3mg\sin\alpha - F = 3ma$ $4mg - T = 4ma$                                                                                                                                                                            | M1A1  |           |
|                    | 4mg - T = 4ma                                                                                                                                                                                                            | M1A1  | (4)       |
| 7b                 | E P. D. 2magga a                                                                                                                                                                                                         | B1; M | 1A1       |
|                    | $F = \frac{1}{4}R; R = 3mg\cos\alpha$ $T - 2.4mg = 3ma$                                                                                                                                                                  |       |           |
|                    |                                                                                                                                                                                                                          | M1    |           |
|                    | $4mg - T = 4ma$ $a = \frac{8g}{35}$ Given answer                                                                                                                                                                         | A1    | (5)       |
| 7c                 | Particles have same acceleration                                                                                                                                                                                         | B1    | (1)       |
| 7d                 | $v^2 = 2 \times \frac{8g}{35} \times 1.75  (= 0.8g)$                                                                                                                                                                     | M1 A  | 1         |
|                    | $-3mg\sin\alpha - F = 3m\alpha'$                                                                                                                                                                                         | M1    |           |
|                    | $a' = -0.8g$ $0 = 0.8g + 2 \times (-0.8g)s$                                                                                                                                                                              | A1    |           |
|                    | $0 = 0.8g + 2 \times (-0.8g)s$                                                                                                                                                                                           | M1 A  | 1         |
|                    | Total distance = $0.5 + 1.75 = 2.25$ (m) Accept 2.3 (m)                                                                                                                                                                  | A1    | (7)<br>17 |
|                    |                                                                                                                                                                                                                          |       |           |
|                    | Notes                                                                                                                                                                                                                    |       |           |
| 7a                 | First M1 for equation of motion for A with usual rules First A1 for a correct equation Second M1 for equation of motion for B with usual rules Second A1 for a correct equation                                          |       |           |
|                    | <b>N.B.</b> If using different tension in second equation, M0 for that equation                                                                                                                                          |       |           |

| Question<br>Number | Scheme                                                                                                                                                                                                                                       | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7b                 | B1 for $F = \frac{1}{4}R$ seen e.g. on diagram<br>First M1 for resolving for A perp to the plane                                                                                                                                             |       |
|                    | First A1 for correct equation                                                                                                                                                                                                                |       |
|                    | N.B. These first 3 marks can be earned in (a).                                                                                                                                                                                               |       |
|                    | Second M1 (Hence) for substituting for <i>R</i> and <i>F</i> and trig. and solving                                                                                                                                                           |       |
|                    | for a (must be some evidence of this) their equations of motion from                                                                                                                                                                         |       |
|                    | part (a)                                                                                                                                                                                                                                     |       |
|                    | Second A1 for given answer (Not available if not using exact values                                                                                                                                                                          |       |
|                    | for trig ratios)                                                                                                                                                                                                                             |       |
| 7c                 | B1 for particles have same acceleration (B0 for same velocity or if incorrect extras given)                                                                                                                                                  |       |
| 7d                 |                                                                                                                                                                                                                                              |       |
|                    | First M1 for attempt to find speed (or speed <sup>2</sup> ) when <i>B</i> hits the ground (M0 if uses <i>g</i> ) First A1 for a correct expression Second M1 for attempt to find deceleration of <i>A</i> Second A1 for correct deceleration |       |
|                    | Third M1 for using deceleration (must have found a deceleration) with $v = 0$ to find distance (M0 if uses $g$ ) Third A1 for a correct equation Fourth A1 for 2.25 (m)                                                                      |       |
|                    |                                                                                                                                                                                                                                              |       |
|                    |                                                                                                                                                                                                                                              |       |