

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Further Pure Mathmatics F3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com or our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WFM03_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

FDFXCFLIAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

June 2018 WFM03 Further Pure Mathematics F3 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$15\mathrm{sech}^2x + 7\mathrm{t}$	anh x = 13	
	$15(1-\tanh^2 x) + 7 \tanh x = 13$	Uses $\operatorname{sech}^2 x = 1 - \tanh^2 x$	M1
	$15 \tanh^2 x - 7 \tanh x - 2 = 0$	Correct 3 term quadratic, terms in any order	A1
	$(5 \tanh x + 1)(3 \tanh x - 2) = 0$ $\Rightarrow \tanh x = -\frac{1}{5}, \frac{2}{3}$	M1: Solves their 3 term quadratic to obtain at least one value for tanhx Correct answers implies method A1: Both correct values If solved by formula accept $\frac{7\pm13}{30}$	M1A1
	$x = \frac{1}{2} \ln \frac{2}{3}, \frac{1}{2} \ln 5$	A1: One correct exact answer A1: Both exact answers correct Allow equivalent answers e.g. $x = \frac{1}{2} \ln 2 - \frac{1}{2} \ln 3, \ln \frac{\sqrt{6}}{3}, \ln \sqrt{\frac{2}{3}}, \ln \sqrt{5} \text{ et}$	A1, A1
			(6)
			Total 6
	Alternative Using	Exponentials	
	$15\left(\frac{2}{e^{x} + e^{-x}}\right)^{2} + 7\left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) = 13$	Substitutes the correct exponential forms The equation may have been re-arranged before substitution. ½s may have been cancelled.	M1
	$6e^{2x} - 34 + 20e^{-2x} = 0$	Correct 3 term quadratic in e ^{2x}	A1
	$3e^{4x} - 17e^{2x} + 10 = 0$		
	$(3e^{2x} - 2)(e^{2x} - 5) = 0$ or $(3e^{x} - 2e^{-x})(e^{x} - 5e^{-x}) = 0$	M1: Solves their 3 term quadratic to obtain at least one value for e^{2x}	
	$\Rightarrow e^{2x} = \frac{2}{3} \text{ or } 5$	A1: Both correct values	M1A1
	$x = \frac{1}{2} \ln \frac{2}{3}, \frac{1}{2} \ln 5$	A1: One correct answer A1: Both answers correct Allow equivalent answers e.g. $x = \frac{1}{2} \ln 2 - \frac{1}{2} \ln 3$	A1, A1

Solving quadratics by calculator: check their solutions if the equation is incorrect. If the solution is correct for their equation, award M1

(allow any multiples) $ \begin{array}{c} $	Question Number	Scheme		Notes	Marks	
$\mathbf{det}(\mathbf{A} - \lambda \mathbf{I}) = 0 \text{ or } \begin{vmatrix} 3-\lambda & 2\\ 2 & 6-\lambda \end{vmatrix} = 0$ $(3-\lambda)(6-\lambda) - 4(=0)$ $\lambda = 2,7$ Expands the determinant and attempts to solve the equation A1 $\lambda = 2,7$ Correct eigenvalues obtained A1 $\frac{3}{2} \begin{pmatrix} x \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix} \text{ or } \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix}$ Use either of <i>their</i> eigenvalues to obtain at least one pair of nonzero values. $\begin{pmatrix} 3-2 & 2 \\ 2 & 6-2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \text{ OR } \begin{pmatrix} 3-7 & 2 \\ 2 & 6-7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ Alt for line above $\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \text{ or } x = 1, y = 2 / x = 2, y = -1$ $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix} \text{ or } \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ Both correct pairs of values (allow any multiples) A1A: Both correct pairs of values (allow any multiples) Both correct and normalised Follow through their eigenvectors $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ B1ft: One correct ft (must be labelled) B1: Both fully correct and consistent (must both be labelled) B1:	2	$\mathbf{A} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$	$\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$		
$\lambda = 2,7$ Correct eigenvalues obtained $\lambda = 2,7$ Correct eigenvalues obtained A1 $\begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = 2 \begin{pmatrix} x \\ y \end{pmatrix} \text{ or } \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = 7 \begin{pmatrix} x \\ y \end{pmatrix}$ Use either of <i>their</i> eigenvalues to obtain at least one pair of nonzero values. $\begin{pmatrix} 3-2 & 2 \\ 2 & 6-2 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = 0 \text{ OR } \begin{pmatrix} 3-7 & 2 \\ 2 & 6-7 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = 0$ Alt for line above $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \end{pmatrix} \text{ or } x = 1, y = 2 / x = 2, y = -1$ $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix} \text{ or } \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ Both correct and normalised Follow through their eigenvectors $\begin{pmatrix} 1 \\ \sqrt{5} \\ 2 \\ \sqrt{5} \end{pmatrix}, \begin{pmatrix} 2 \\ \sqrt{5} \\ -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}$ B1ft: One correct ft (must be labelled) (ie order of eigenvalues must be consistent with order of eigenvectors) $D = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, P = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ Both can be reversed and multiples allowed. $D = k \times \text{matrix shown}$ $P = k \times \text{matrix shown}$	(a)	$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \text{ or } \begin{vmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{vmatrix} = 0$	0)		M1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3-\lambda)(6-\lambda)-4(=0)$			M1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\lambda = 2,7$		Correct eigenvalues obtained	A1	
(b) $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 7 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix}$			$\begin{pmatrix} x \\ y \end{pmatrix}$	Use either of <i>their</i> eigenvalues to obtain at least one pair of nonzero values.	M1	
(b) $\mathbf{D} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = k^2 \times \text{matrix shown}$ $\mathbf{D} = k \times \text{matrix shown}$		$ \begin{pmatrix} 3-2 & 2 \\ 2 & 6-2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0 \text{ OR } \begin{pmatrix} 3-7 & 2 \\ 2 & 6-7 \end{pmatrix} $	$\begin{pmatrix} x \\ y \end{pmatrix} = 0$	Alt for line above		
(b) $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ Both can be reversed and multiples allowed. $\mathbf{D} = k^2 \times \text{matrix shown}$ $\mathbf{P} = k \times \text{matrix shown}$		$\binom{1}{2}$, $\binom{2}{-1}$ or $x = 1, y = 2 / x = 2, y = 2$:-1	(allow any multiples) A1: Both correct pairs of values	A1A1	
$\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = k^2 \times \text{matrix shown}$ $\mathbf{D} = k \times \text{matrix shown}$ $\mathbf{D} = k \times \text{matrix shown}$		$ \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix}, \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}} \end{pmatrix} \text{ or } \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \end{pmatrix} $		Follow through their	A1ft	
$\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ $\mathbf{D} = k^2 \times \text{matrix shown}$ $\mathbf{D} = k \times \text{matrix shown}$ $\mathbf{D} = k \times \text{matrix shown}$					(7)	
eigenvectors) $\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$ Both can be reversed and multiples allowed. $\mathbf{D} = k^2 \times \text{matrix shown}$ $\mathbf{P} = k \times \text{matrix shown}$			1	`		
		$\mathbf{D} = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$		onsistent (must both be labelled) ie order of eigenvalues must be onsistent with order of	B1ft, B1	
То		$\mathbf{D} = \begin{pmatrix} 0 & 7 \\ 2 & 0 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$	a	llowed. $\mathbf{D} = k^2 \times \text{matrix shown}$		
10					(2) Total 9	
					1 otal 9	

Question Number	Scheme	Notes	Marks
3 Way 1	$\frac{d\left(\frac{\sin x}{\cos x - 1}\right)}{dx} = \frac{\cos x(\cos x - 1) + \sin^2 x}{(\cos x - 1)^2}$	M1: Correct use of quotient (or product) rule	- M1A1
	$dx \qquad (\cos x - 1)^2$	A1: Correct expression	
		dM1: $\frac{1}{1 + \left(\frac{\sin x}{\cos x - 1}\right)^2} \times \text{quotient}$ must be a function of x A1: Correct expression	dM1A1
	$\frac{dy}{dx} = \frac{(\cos x - 1)^2}{(\cos x - 1)^2 + \sin^2 x} \left(\frac{1 - \cos x}{(\cos x - 1)^2}\right) = \frac{1}{2}$	ddM1: Attempts to simplify to obtain a constant. Must reach a constant A1: cao	ddM1A1
	Special Case: Quotient rule used with numera	<u> </u>	(6)
XX 0	otherwise correct: award M1A0 and M1A0dd		Total 6
Way 2	$d\left(\frac{\sin x}{\cos x-1}\right) = \cos x(\cos x-1) + \sin^2 x$	M1: Correct use of quotient (or product) rule	- M1A1
	$\frac{d\left(\frac{\sin x}{\cos x - 1}\right)}{dx} = \frac{\cos x(\cos x - 1) + \sin^2 x}{(\cos x - 1)^2}$	A1: Correct expression	MIAI
	$\tan y = \left(\frac{\sin x}{\cos x - 1}\right) \Rightarrow \sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x}$	$=\frac{\cos x(\cos x - 1) + \sin^2 x}{\left(\cos x - 1\right)^2}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 + \left(\frac{\sin x}{\cos x - 1}\right)^2} \left(\frac{\cos x (\cos x - 1) + \sin^2 x}{\left(\cos x - 1\right)^2}\right)$		dM1A1
	$\frac{dy}{dx} = \frac{(\cos x - 1)^2}{(\cos x - 1)^2 + \sin^2 x} \left(\frac{1 - \cos x}{(\cos x - 1)^2} \right) = \frac{1}{2}$	A1: Correct expression ddM1: Attempts to simplify to obtain a constant. Must reach a constant. A1: cao	ddM1A1
Way 3	$\tan y = \left(\frac{\sin x}{\cos x - 1}\right) \Rightarrow (\cos x - 1) \tan y = \sin x$		
	$\Rightarrow -\sin x \tan y + (\cos x - 1)\sec^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = \cos x$	M1: Differentiates implicitly A1: Correct differentiation	M1A1
	$\Rightarrow \frac{-\sin^2 x}{\cos x - 1} + \left(\cos x - 1\right) \left(1 + \frac{\sin^2 x}{\left(\cos x - 1\right)^2}\right) \frac{\mathrm{d}y}{\mathrm{d}x} =$	dM1: Substitutes for y throughout A1: Correct equation in terms of x only (and dy/dx)	dM1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	ddM1: Attempts to simplify to obtain a constant. Must reach a constant. A1: cao	ddM1A1
Way 4	$\frac{\sin x}{\cos x - 1} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{1 - 2\sin^2\frac{x}{2} - 1}$	M1: Using the correct double angle formula	M1A1
	$1-2\sin^2-1$	A1: Correct expression	
	$= -\cot\frac{x}{2} = -\tan\left(\frac{\pi}{2} \pm \frac{x}{2}\right) = \tan\left(\frac{x}{2} \pm \frac{\pi}{2}\right)$	M1: Obtains tan in terms of x A1: $\tan\left(\frac{x}{2} \pm \frac{\pi}{2}\right)$	dM1A1
	So $y = \arctan\left(\tan\left(\frac{x}{2} \pm \frac{\pi}{2}\right)\right) \Rightarrow \frac{dy}{dx} = \frac{1}{2}$	ddM1: Attempts to simplify to obtain a constant. Must reach a constant. A1: cao	ddM1A1

Question Number	Scheme		Notes	Marks
4	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$			
(a)	$\frac{dy}{dx} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} \text{ or } \frac{b^2 x}{a^2 y} \text{ or } \frac{bx}{a^2} \left(\frac{x^2}{a^2} - 1\right)^{-\frac{1}{2}}$	Correct tar	ngent gradient in any	B1
	$m_N = -\frac{a \sec \theta \tan \theta}{b \sec^2 \theta} \left(= -\frac{a}{b} \sin \theta \right)$	-	netric forms and the rpendicular rule	M1
	$y - b \tan \theta = -\frac{a}{b} \sin \theta (x - a \sec \theta)$	$ M1: Correct straight line method using their m_N Use of y = mx + c must include finding a value for c A1: Correct equation any equivalent to that shown. $		M1A1
	$by - b^2 \tan \theta = -ax \sin \theta + a^2 \tan \theta$			
	$ax \sin \theta + by = (a^2 + b^2) \tan \theta *$ Completes to printed answer wing at least one intermediate step			A1*
			(5)	
(b)	$y = 0 \Rightarrow x = \frac{\left(a^2 + b^2\right)\tan\theta}{a\sin\theta} \left(=\frac{\left(a^2 + b^2\right)}{a}\sec\theta\right)$	Correct x	coordinate	B1
	$M \operatorname{is} \left(\frac{1}{2} \left(\frac{a^2 + b^2}{a} \sec \theta + a \sec \theta \right), \frac{b}{2} \tan \theta \right)$	M1: Corre	ect midpoint method for ordinate	
	$= \left(\frac{2a^2 + b^2}{2a}\sec\theta, \frac{b}{2}\tan\theta\right) \qquad \text{oe}$		ct coordinates for M , any accepted. Need not be in brackets.	M1A1
			1	(3)
(c)	$\sec \theta = \frac{2ax}{2a^2 + b^2}, \tan \theta = \frac{2y}{b} \Rightarrow 1 + \left(\frac{2y}{b}\right)^2 = \left(\frac{2y}{b}\right)^2$	$\sec \theta = \frac{2ax}{2a^2 + b^2}, \tan \theta = \frac{2y}{b} \Rightarrow 1 + \left(\frac{2y}{b}\right)^2 = \left(\frac{2ax}{2a^2 + b^2}\right)^2$ $= \left(\frac{2ax}{2a^2 + b^2}\right)^2$		M1A1
	24 10 0 (0) (24 10)		A1: Correct equation	
	h^2 $(4a^2x^2)$ dM1: Makes y^2 the subject		$\cos y^2$ the subject	
	$y^{2} = \frac{b^{2}}{4} \left(\frac{4a^{2}x^{2}}{\left(2a^{2} + b^{2}\right)^{2}} - 1 \right) \qquad \text{oe}$	$\frac{(a^2+b^2)^2}{(a^2+b^2)^2}$ oe A1: Correct equation in the required form		dM1A1
				(4)
				Total 12

Question Number	Scheme	Notes	Marks
5	$\mathbf{M} = \begin{pmatrix} 4 & -5 \\ k & 2 \\ -3 & -5 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix}$	
(a)	$\left \mathbf{M}\right = 4\left(2k\right) + 5\left(k^2\right)\left(+0\right)$	Correct determinant in any form (Quadratic may be unsimplified)	B1
	Minors: $\begin{pmatrix} 2k & k^2 & -5k+6 \\ -5k & 4k & -35 \\ 0 & 0 & 8+5k \end{pmatrix}$ or coface B1: A correct first step of min	etors: $\begin{pmatrix} 2k & -k^2 & 6-5k \\ 5k & 4k & 35 \\ 0 & 0 & 8+5k \end{pmatrix}$	B1
	$\mathbf{M}^{-1} = \frac{1}{5k^2 + 8k} \begin{pmatrix} 2k & 5k & 0\\ -k^2 & 4k & 0\\ 6 - 5k & 35 & 8 + 5k \end{pmatrix}$	M1: Fully recognisable attempt at the inverse including reciprocal of the determinant	M1B1A1
			(5)
(b)	$\mathbf{M}^{-1} = -\frac{1}{3} \begin{pmatrix} -2 & -5 & 0 \\ -1 & -4 & 0 \\ 11 & 35 & 3 \end{pmatrix}$	Substitutes $k = -1$	M1
	$\Pi_2: x = s, y = t, z = 2s - 4$	Attempts parametric form $(s \neq 0, t \neq 0)$ Any pair of letters (inc x and y) can be used as parameters	M1
	$-\frac{1}{3} \begin{pmatrix} -2 & -5 & 0 \\ -1 & -4 & 0 \\ 11 & 35 & 3 \end{pmatrix} \begin{pmatrix} s \\ t \\ 2s - 4 \end{pmatrix}$	Attempts M ⁻¹ × their parametric form Depends on both M marks above	ddM1
	$-\frac{1}{3} \begin{pmatrix} -2s - 5t \\ -s - 4t \\ 11s + 35t + 6s - 12 \end{pmatrix}$	Correct parametric form for Π_1 with s, t	A1
	11x - 5y + z = 4	dddM1:Eliminates s and t to obtain a cartesian equation All 3 previous M marks needed $x = -2x - 5y$ gets M0 here (unless the parameters are now changed) A1:Correct equation (oe)	dddM1A1
			(6)
			Total 11

(b) Way 2	$\mathbf{M} = \begin{pmatrix} 4 & -5 & 0 \\ -1 & 2 & 0 \\ -3 & -5 & -1 \end{pmatrix}$ $\Pi_2 : x = s, y = t, z = 2s - 4$ $\begin{pmatrix} 4 & -5 & 0 \\ -1 & 2 & 0 \\ -3 & -5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4x - 5y \\ -x + 2y \\ -3x - 5y - z \end{pmatrix}$	Attempts parametric form Attempts M x		M1 M1
	$\begin{pmatrix} 4x - 5y \\ -x + 2y \\ -3x - 5y - z \end{pmatrix} = \begin{pmatrix} s \\ t \\ 2s - 4 \end{pmatrix}$	ddM1: Sets $\mathbf{M}\mathbf{x}$ = their parametric form A1: Correct equations		ddM1 A1
	11x - 5y + z = 4	M1:Eliminates <i>s</i> and <i>t</i> to obtain a cartesian equation A1:Correct equation (oe)		dddM1 A1
Way 3	$\begin{pmatrix} 4 & -5 & 0 \\ -1 & 2 & 0 \\ -3 & -5 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$		M1: General point (a, b, c) on first plane M1: Setting up the transformation equation (as left)	M1 M1
	4a-5b = x $-a+2b = y$ $-3a-5b-c = z$		M1: Multiply the matrices on the lhs and equate to rhs A1: correct equations	ddM1A1
	$2x - z = 4 \Rightarrow 2(4a - 5b) - (-3a - 5b -$	(c)=4	M1: Using $2x-z=4$	dddM1
	11a - 5b + c = 4 $11x - 5y + z = 4$		A1: Correct equation of the plane. Must have <i>x</i> , <i>y</i> , <i>z</i>	A1

Question Number	Scheme		Notes	Marks	
6	$x = \theta - \tanh \theta$, $y = \sec \theta$	$h\theta$, $0 \le 0$	$\theta \le \ln 3$		
(a)(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) = 1 - \mathrm{sech}^2\theta$	Correct deri	Correct derivative		
(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right) = -\mathrm{sech}\theta\tanh\theta\text{oe}$			B1	
	If both derivatives are in terms of a different B1B0. If one (or both) incorrect award B0B0		otherwise correct, allow		
(1)				(2)	
(b)	$S = (2\pi) \int \operatorname{sech} \theta \sqrt{(1 - \operatorname{sech}^2 \theta)^2 + (-\operatorname{sech} \theta)^2}$	$ \frac{1}{(d\theta)^2} (d\theta) $	$(d\theta)^2$ uses the correct formula with their derivatives 2π not needed		
	$S = 2\pi \int \operatorname{sech} \theta \sqrt{1 - \operatorname{sech}^2 \theta} d\theta$				
	$S = 2\pi \int \operatorname{sech} \theta \tanh \theta d\theta$	·	gral after full simplification mits not needed	A1	
	$S = 2\pi \left[-\operatorname{sech} \theta \right]$	Correct inte	gration – limits not needed	A1	
	$S = -2\pi \left(\operatorname{sech}(\ln 3) - \operatorname{sech}(0) \right) = 0.8\pi$	dM1: Included In3) correct A1: cao and	dM1A1cao and cso		
	Use of calculator: Correct integral, inc correct answer (multiple of π) scores full marks. Nown but if simplified incorrectly, only M marker. Incorrect answer given, mark as sch	lo need to sim mark can be a neme.			
	Allow h (eg from tanh) to disappear as long	as the function			
	hyperbolics.	<u> </u>		(5)	
				(5) Total 7	
				Total /	

Question Number	Scheme	Notes		
7	$\Pi_1: x+y+z=3,$	Π_2 : $2x + 3y - z = 4$		
(a) Way 1	$x = \lambda \Rightarrow y = \frac{7}{4} - \frac{3}{4}\lambda$	$A \Rightarrow y = \frac{7}{4} - \frac{3}{4}\lambda$ M1: Obtains 2 equations connecting x, y or z with λ		
	or $\lambda = \frac{4y - 7}{-3}$	A1: Correct equations	M1A1	
	5 1	$z = \frac{5}{4} - \frac{1}{4}\lambda$ or $\lambda = 5 - 4z$ M1: Obtains 3 equations connecting x, y or z with λ		
	4 4	A1: Correct equations		
	$\frac{x}{1} = \frac{7 - 4y}{3} = \frac{5 - 4z}{1} (= \lambda)$	M1: Correct use of cartesian form A1: Correct equation (allow equivalents)	M1A1	
	$y = \lambda \Rightarrow \frac{7-3x}{4} = \frac{y}{1} = \frac{3z-2}{1} \left(\text{or } \frac{7-3x}{4} = y = 3z-2 \right)$			
	$z = \lambda \Rightarrow \frac{5-x}{4} = \frac{y+2}{3} = \frac{z}{1} \text{ (or } = z\text{)}$			
			(6)	
(a)	; ; b (1)	M1. Attempt yeater product of normals		
Way 2		M1: Attempt vector product of normals	M1A1	
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{vmatrix} = \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix}$	A1: Correct vector	WITAI	
	$x = 0 \Rightarrow y + z = 3, 3y - z = 4$ $\Rightarrow y = \frac{7}{4}, z = \frac{5}{4} \rightarrow \left(0, \frac{7}{4}, \frac{5}{4}\right)$	M1: Attempt a point on the line	N 1 A 1	
	NB $y = 0$ gives $x = \frac{7}{3}$, $z = \frac{2}{3}$ z = 0 gives $x = 5$, $y = -2$	A1: Correct point (1, 1, 1) seen frequently	M1A1	
		M1: Correct use of cartesian form A1: Correct equation (allow equivalents)	M1A1	
	$\frac{x}{-4} = \frac{y - \frac{7}{4}}{3} = \frac{z - \frac{5}{4}}{1} (= \lambda)$ M1: Correct use of cartesian form A1: Correct equation (allow equivalents) or $\frac{x - 1}{-4} = \frac{y - 1}{3} = \frac{z - 1}{1} (= \lambda)$ Equation seen if (1, 1, 1) used			

(a)	$x = -\frac{4}{3}y + \frac{7}{3}$		M1: Eliminates 1 variable		M1A1
Way 3	$x = -\frac{1}{3}y + \frac{1}{3}$		A1: Correct equation		WITAT
	x = 5 - 4z		M1: Eliminates 2nd variable		M1A1
	x - 3 - 42		A1: Correct equation		WIIAI
	$\frac{x}{1} = -\frac{4}{3}y + \frac{7}{3} = 5 - 4z$		M1: Correct use of cartesian form		M1A1
	$\frac{1}{1} - \frac{3}{3}y + \frac{3}{3} - \frac{3}{42}$		A1: Correct equation (allow equivalents))	WITAT
					(6)
(b)	$5(-4\lambda)-4\left(\frac{7}{4}+3\lambda\right)+4\left(\frac{5}{4}+\lambda\right)=12$	Su	ubstitutes parametric form of L into Π_3	M	
	$\lambda = -\frac{1}{2} \Rightarrow x =, y =, z =$	Solves for λ and attempts coordinates		dM	I 1
	$\left(2, \frac{1}{4}, \frac{3}{4}\right)$ or $x = 2, y = \frac{1}{4}, z = \frac{3}{4}$ or $\begin{pmatrix} 2\\1/4\\3/4 \end{pmatrix}$		Correct coordinates		
					(3)

(b) Way 2	$5x-4.\frac{3}{4}\left(\frac{7}{3}-x\right)+4.\frac{1}{4}\left(5-x\right)=12$	Substitutes for y and z in terms of x into Π_3	M1
	$x = 2 \Rightarrow y =, z =$	Solves for <i>x</i> and attempts other coordinates	dM1
	$\left(2, \frac{1}{4}, \frac{3}{4}\right)$ or $x = 2, y = \frac{1}{4}, z = \frac{3}{4}$ or $\left(\frac{2}{1/4}, \frac{3}{4}\right)$	Correct coordinates	A1

(c)	$\begin{pmatrix} -2 \\ -\frac{1}{4} \\ -\frac{3}{4} \end{pmatrix} \bullet \begin{pmatrix} -4 \\ 3 \\ 1 \end{pmatrix} = \sqrt{\frac{37}{8}} \sqrt{26} \cos \theta$	Use scalar product between \pm their \overrightarrow{OA} and direction of their L	M1
	$\frac{13}{2} = \sqrt{\frac{37}{8}} \sqrt{26} \cos \theta \Rightarrow \theta = \dots$	Evaluate the scalar product and complete to $\theta = \dots$ (or the supplementary angle) (Check the product if the vectors are incorrect)	dM1
	$\theta = 53.6^{\circ}$	cao	A1
			(3)
			Total 12

Question Number	Scheme		Marks		
8	$I_n = \int \frac{x^n}{\sqrt{(x^2 + k)^2}}$	$\frac{1}{2}$ dx			
(a)	$I_n = \int x^{n-1} x \left(x^2 + k^2 \right)^{-\frac{1}{2}} dx$	-	Separates correctly (Without this there will be no progress.)		
	$I_n = x^{n-1} \left(x^2 + k^2 \right)^{\frac{1}{2}} - \int (n-1) x^{n-2} \left(x^2 + k^2 \right)^{\frac{1}{2}} dx$;	rts in the correct direction rrect expression	M1A1	
	$= \dots - (n-1) \int \frac{x^{n-2} (x^2 + k^2)}{\sqrt{(x^2 + k^2)}} dx$	Writes (x^2)	$(x^2 + k^2)^{\frac{1}{2}}$ as $\frac{(x^2 + k^2)}{\sqrt{(x^2 + k^2)}}$	dM1	
	$= \dots - (n-1) \int \frac{x^n}{\sqrt{(x^2 + k^2)}} dx - (n-1) \int \frac{k^2 x^n}{\sqrt{(x^2 + k^2)}} dx$	$\frac{1}{(k-k^2)} dx$	Correct separation	A1	
	$I_n = x^{n-1} \left(x^2 + k^2 \right)^{\frac{1}{2}} - (n-1)I_n - (n-1)k^2 I_{n-2}$		ces I_n and I_{n-2} on rhs s on both M marks above	ddM1	
	$I_n = \frac{x^{n-1}}{n} \left(x^2 + k^2\right)^{\frac{1}{2}} - \frac{(n-1)}{n} k^2 I_{n-2} *$	Cso (G	iven answer!)	A1*	
				(7)	
(b)	$I_5 = \int \frac{x^5}{\sqrt{(x^2 + 1)}} dx = \frac{x^4}{5} (x^2 + 1)^{\frac{1}{2}} - \frac{4}{5} I_3$	Correct first application of the reduction formula Can have k^2 instead of 1		M1	
	$I_3 = \frac{x^2}{3} \left(x^2 + 1 \right)^{\frac{1}{2}} - \frac{2}{3} I_1$	reduction	Correct second application of the reduction formula Can have k^2 instead of 1		
	$I_1 = \int \frac{x}{\sqrt{(x^2 + 1)}} dx = \left[\sqrt{x^2 + 1}\right] \Rightarrow I_5 = \dots$	And att	$\int \frac{x}{\sqrt{(x^2+1)}} dx = a\sqrt{x^2+1}$ And attempt I_5 using correct limits $(k^2 \text{ or } 1)$		
	$\int_0^1 \frac{x^5}{\sqrt{(x^2+1)}} \mathrm{d}x = \frac{7}{15} \sqrt{2} - \frac{8}{15}$	A1: Eit	A1A1 (5) Total 12		
(b)					
Way 2	$I_1 = \int \frac{x}{\sqrt{(x^2 + 1)}} dx = \sqrt{x^2 + 1}$	$\int \frac{1}{\sqrt{(x^2 \text{ or } 1)}}$	$\int \frac{x}{\sqrt{(x^2+1)}} dx = a\sqrt{x^2+1}$ $(k^2 \text{ or } 1)$		
	$I_3 = \frac{x^2}{3} \left(x^2 + 1 \right)^{\frac{1}{2}} - \frac{2}{3} I_1$	_	Attempt I_3 by using the reduction formula $(k^2 \text{ or } 1)$		
	$I_5 = \int \frac{x^5}{\sqrt{(x^2+1)}} dx = \frac{x^4}{5} (x^2+1)^{\frac{1}{2}} - \frac{4}{5} I_3$ $= \frac{x^4}{5} (x^2+1)^{\frac{1}{2}} - \frac{4}{5} \left(\frac{x^2}{3} (x^2+1)^{\frac{1}{2}} - \frac{2}{3} (x^2+1)^{\frac{1}{2}}\right)$		complete statement for I_5 the correct limits	ddM1	
	$\int_0^1 \frac{x^5}{\sqrt{(x^2+1)}} \mathrm{d}x = \frac{7}{15} \sqrt{2} - \frac{8}{15}$		her term correct th terms correct	A1A1	