Leave

blank

F1 May 16 Model Solubbrs IAL

Kerine 2

1. Use the standard results for $\sum_{r=1}^{n} r$ and for $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n,

$$\sum_{r=1}^{n} r(r^2 - 3) = \frac{n}{4}(n+a)(n+b)(n+c)$$

where a, b and c are integers to be found.

(4)

$$r = 1$$

$$r = \frac{1}{\sqrt{(r_s - 3)}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 3 c$$

$$= \frac{\Lambda^2}{4} (\Lambda + 1)^2 - \frac{3\Lambda}{2} (\Lambda + 1)$$

$$= \frac{\Lambda}{4} \left(\Lambda + 1 \right) \left[\Lambda \left(\Lambda + 1 \right) - 6 \right]$$

$$= \frac{\Lambda}{4} (n+1) (n^2 + n - 6)$$

$$= \frac{\Lambda}{4} (n+1) (n+3) (n-2) \qquad a=1 \\ b=3 \\ c=-2$$

- 2. A parabola P has cartesian equation $y^2 = 28x$. The point S is the focus of the parabola P.
 - (a) Write down the coordinates of the point S.

(1)

blank

Points A and B lie on the parabola P. The line AB is parallel to the directrix of P and cuts the x-axis at the midpoint of OS, where O is the origin.

(b) Find the exact area of triangle ABS.

(4)

5: (7.0)

blank

3.
$$n^2 + 3x^{-1} - 1$$

$$f(x) = x^2 + \frac{3}{x} - 1, \quad x < 0$$

The only real root, α , of the equation f(x) = 0 lies in the interval [-2, -1].

- (a) Taking -1.5 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 2 decimal places.
- (b) Show that your answer to part (a) gives α correct to 2 decimal places. (2)

(a)
$$F'(\pi) = 2x - 3x^{-2}$$

 $C(+1,5) = -3$

$$: \times \times -1.5 - \frac{F(-1.5)}{F'(-1.5)} = -87$$

Given that

$$\mathbf{A} = \begin{pmatrix} k & 3 \\ -1 & k+2 \end{pmatrix}, \text{ where } k \text{ is a constant}$$

(a) show that det(A) > 0 for all real values of k,

(3)

(b) find A^{-1} in terms of k.

(2)

(a)
$$det(A) = K(k+2) + 3 = K^2 + 2k + 3$$

$$= (K+1)^2 + 2$$

det(A)>0 for all NEIR

Also, 3/0 (K2+2N+3) = 2h+2

\$:. d [det(A)]= 24+2 =0

=) k=-1

Min Point [Hetu) 2270 N=-1=) det(A)=2 (-1,2

det (A) >0 for all

N+2

Scanned by CamScanner

Leave

5.

$$2z + z^* = \frac{3 + 4i}{7 + i}$$

Find z, giving your answer in the form a + bi, where a and b are real constants. You must show all your working. (5)

UHS = RHS => 3a +bi =
$$\frac{1}{2}$$
 + $\frac{1}{2}$ i

$$3a = \frac{1}{2} \Rightarrow a = \frac{1}{6}$$

$$b = \frac{1}{2}$$

6. The rectangular hyperbola H has equation xy = 25

(a) Verify that, for
$$t = 0$$
, the point $P\left(5t, \frac{5}{t}\right)$ is a general point on H .

The point A on H has parameter $t = \frac{1}{2}$

(b) Show that the normal to H at the point A has equation

$$8y - 2x - 75 = 0 ag{5}$$

This normal at A meets H again at the point B.

(c) Find the coordinates of B.

(4)

G(a) P has parameters
$$2x = 5t$$
, $y = \frac{5}{t}$
 $\therefore 2yy = 5t \times \frac{5}{t} = 25$, $t \neq 0$

(b)
$$A\left(\frac{5}{2}, 10\right)$$

$$y = 25\pi^{-1} -) \frac{\partial z}{\partial n} = -25\pi^{-2} = -\frac{25}{\pi^2}$$

$$\bigcirc A, \frac{\partial y}{\partial x} = -\frac{25}{(5/2)^2} = -4$$

Question 6 continued

$$y = \frac{25}{2} \Rightarrow 8(\frac{25}{2}) - 2\pi - 75 = 0$$

$$\frac{1}{n}$$
 $\frac{200}{n}$ $\frac{2n-75=0}{}$

$$(x,n) =)$$
 200 - $2x^2 - 75n = 0$

$$2n^2 + 75n - 200 = 0$$

$$=$$
: $(2x-5)(x+40)=0$

$$= B(-40, -\frac{5}{8})$$

blank

$$\mathbf{P} = \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{pmatrix}$$

(a) Describe fully the single geometrical transformation U represented by the matrix P.

The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a reflection in the line with equation y = x

(b) Write down the matrix Q. (1)

Given that the transformation V followed by the transformation U is the transformation T, which is represented by the matrix \mathbf{R} ,

(c) find the matrix R. (2)

(d) Show that there is a value of k for which the transformation T maps each point on the straight line y = kx onto itself, and state the value of k.

Question 7 continued

Question 7 continued

(b)
$$\Rightarrow \Rightarrow Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$R = \begin{pmatrix} 5/13 & -12 \\ 12/13 & 5/13 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$R^{-1} = \frac{1}{-1} \left(\frac{12113}{-5113} - \frac{5113}{13} \right)$$

18

	Leav blan
Question 7 continued	
N N	
- (NX)	
545 / 2	
(2) $-12/13$ $5/13$	-
- (Nn) [5/13 (Nn)	
5/13	
1 / -12 x + 5 N x	-
$(nx)^{-1}$ $(5/13x + \frac{12}{12} xx)$	
3	umini
	_
1	-
$\therefore \chi = 2 + \chi \left(\frac{2}{3} - \frac{13}{3}\right)$	-
$=$ $\frac{3}{13}N - \frac{12}{13} = 1$	
=) k=5	-in-
-: T maps each point and y=Un onto itself for k=5	
itself for h=5	
	-
	# Termina or ju

8.

$$f(z) = z^4 + 6z^3 + 76z^2 + az + b$$

where a and b are real constants.

Given that -3 + 8i is a complex root of the equation f(z) = 0

(a) write down another complex root of this equation.

- (1)
- (b) Hence, or otherwise, find the other roots of the equation f(z) = 0
- (6)
- (c) Show on a single Argand diagram all four roots of the equation f(z) = 0
- (2)

$$=2^{2}+62+9-64i^{2}$$

$$= z^{4} + (u+6)z^{3} + (v+6u)z^{2}$$

(Total 9 marks)

Leave

blank

9. The quadratic equation

$$2x^2 + 4x - 3 = 0$$

has roots α and β .

Without solving the quadratic equation,

- (a) find the exact value of
 - (i) $\alpha^2 + \beta^2$
 - (ii) $\alpha^3 + \beta^3$

(5)

(b) Find a quadratic equation which has roots $(a^2 + \beta)$ and $(\beta^2 + \alpha)$, giving your answer in the form $ax^2 + bx + c = 0$, where a, b and c are integers.

(4)

$$Q(a)(i)(n-a)(n-b) = \frac{2n^2+4n-3}{2} = n^2+2n-\frac{3}{2}$$

$$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$$

$$= (a+B)^2 - (a+B)^2 - 2aB$$

$$= \alpha^2 + \beta^2 = 7$$

Question q continued

(ii)
$$(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta^2 + 3\beta\alpha^2$$

= $\alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$

$$= \alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

$$-\alpha^3 + \beta^3 = -8 - 9 = -17$$

=
$$n^2 - n(\beta^2 + \alpha) - n(\alpha^2 + \beta) + (\Lambda^2 + \alpha)(\beta^2 + \alpha)$$

=
$$n^2 - (\alpha^2 + \beta^2 + \lambda + \beta) n + \alpha^2 \beta^2 + \alpha^3 + \beta^3 + \alpha \beta$$

$$= n^2 - (7-2)n + \frac{9}{4} - 17 - \frac{3}{2}$$

$$= \chi^2 - 5\chi - \frac{65}{9} = 0$$

10. (i) A sequence of positive numbers is defined by

$$u_1 = 5$$

 $u_{n+1} = 3u_n + 2, \quad n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$,

$$u_n = 2 \times (3)^n - 1$$
 (5)

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$$

(6)

$$u_{K+1} = 3[2 \times (3)^{k} - 1] + 2$$

$$= 6(3)^{k} - 1$$

$$= 2 \cdot 3 \cdot 3^{k} - 1 = 2(3)^{k+1} - 1$$

Question 10 continued	
$= 2 \times (3) = -1 \text{as it should}$ $= 2 \times (3) = -1 \text{as under } u_0 = 2 \times (3)$	for n= K+1 3) 1 - 1
: Result is shown true for n > k+	1
If the result is true for n=1 is shown to be true for Since it's true for n=1 must be true for n=2 and all n \in \text{Z/\in} by induc	
(ii) When n=1, LHS= = 4x1	_= <u>Y</u> 3
$RHS = 3 - \frac{3+2}{3} = 3 - \frac{5}{3} =$	y 3
: LHS= RHS to true for n=1	The state of the s
: result is true for n=1.	
When let's assume for n=K,	
	3+2K).
r=1 3 - 3	3K
is frue.	
	-

PMT

Question 10 continued

When N=K+1,

We must show

$$\frac{k+1}{2} = 3 - \frac{3+2(k+1)}{3^{k+1}}$$

$$= 3 - \frac{5+2k}{3^{k+1}}$$

Now when N=N+1

CHS:
$$\frac{4}{3}$$
 = $\frac{1}{3}$ + $\frac{4}{3}$ (N+1)

$$= 3 - \frac{(3+2k)}{3} + \frac{4(k+1)}{3^{k+1}}$$

$$= 3 - \frac{3(3+2k)}{3^{k+1}} + \frac{4(k+1)}{3^{k+1}}$$

$$= 3 + \frac{4k+4-9-6k}{3^{k+1}} = \frac{-2k-5}{3}$$

$$=3-\frac{5+2k}{3^{k+1}}$$

Question 10 continued $= 3 - \frac{3+2(k+1)}{3^{k+1}}$ as it should
: Result is true for n= N+1
If result is type for $n=k$, it is shown free for $n=k+1$, since it's the for $n=k$, it must be true for $n=k$, $n=2$, 3 , 4 and all $n=2$, 3 , 4 and all
mducton.

betarokT