

Mark Scheme (Results)

October 2020

Pearson Edexcel International A Level In Further Pure Mathmatics F3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code WFM03_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Notes	Marks	
1(a)	$4\sinh^3 x + 3\sinh x = 4$	$\left(\frac{e^{x}-e^{-x}}{e^{-x}}\right)^{3}+3\left(\frac{e^{x}-e^{-x}}{e^{-x}}\right)$		
	$=4\left(\frac{e^{3x}-3e^{x}+3e^{-x}}{8}\right)$	$\frac{-\mathrm{e}^{-3x}}{2} + 3\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)$	M1	
	Uses $\sinh x = \frac{e^x - e^{-x}}{2}$ on both $\sinh x$	terms and attempts to cube the bracket		
	(min accepted is a linea	ar x a quadratic bracket)		
	$=\frac{1}{2}e^{3x}-\frac{3}{2}e^{x}+\frac{3}{2}e^{-x}$	$-\frac{1}{2}e^{-3x} + \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$	A 1*	
	$=\frac{\mathrm{e}^{3x}-\mathrm{e}^{-3x}}{2}$	$-=\sinh 3x^*$	AI	
			(2)	
(b)	$\sinh 3x = 19\sinh x \Longrightarrow 4\sin^3$	$nh^3 x + 3\sinh x = 19\sinh x$	M1	
	$\Rightarrow 4 \sinh^3 x - 16 \sinh x = 0$ Uses the result from (a) and combines terms			
	$(\sinh x = 0 \text{ or}) \sinh^2 x = 4$	$\sinh^2 x = 4 \text{ or } \sinh x = (\pm)2$	A1	
	(0, 0)	States the origin as one intersection	B1	
	$\ln\left(2+\sqrt{5}\right)\mathbf{and}-\ln\left(2+\sqrt{5}\right)$	Two correct non-zero x values(allow e.g. $\ln(-2 + \sqrt{5})$ for $-\ln(2 + \sqrt{5})$)	A1	
	$\left(\ln\left(2+\sqrt{5}\right),38\right)$ and $\left(-\ln\left(2+\sqrt{5}\right),-38\right)$	Two correct points (allow e.g. $\ln(-2+\sqrt{5})$ for $-\ln(2+\sqrt{5})$)	A1	
			(5)	
	Alternative for (b)	using exponentials		
	$\sinh 3x = 19\sinh x \Longrightarrow \frac{e^{3x}}{2}$	$\frac{-e^{-3x}}{2} = \frac{19(e^x - e^{-x})}{2} \Longrightarrow \dots$	M1	
	Substitutes the correct exponential	forms and collects terms to one side	Δ1	
	$\Rightarrow e^{6x} - 19e^{4x} + 19e^{2x} - 1 = 0$	Correct equation (or equivalent)	AI	
	(0, 0)	States the origin as one intersection	B1	
	$\frac{1}{2}\ln\left(9+4\sqrt{5}\right)\mathbf{or}\frac{1}{2}\ln\left(9-4\sqrt{5}\right)$	Two correct non-zero <i>x</i> values (oe)	A1	
	$\left(\frac{1}{2}\ln\left(9+4\sqrt{5}\right),38\right)$ and $\left(\frac{1}{2}\ln\left(9-4\sqrt{5}\right),-38\right)$	Two correct points (oe)	A1	
			Total 7	

Question Number	Scheme	Notes	Marks
2(i)	$3x^{2} + 12x + 24 = 3(x^{2} + 4x + 8)$ $= 3((x+2)^{2} + 4)$	Obtains $3((x+2)^2 +)$ or $3(x+2)^2 +$ Must include 3 now or later	M1
	$3((x+2)^2+4)$ or $3(x+2)^2+12$		A1
	$\int \frac{1}{3x^2 + 12x + 24} dx = \frac{1}{3} \int \frac{1}{(x+2)}$ M1: Use of A1: Fully correct expression (6)	$\frac{1}{y^{2}+4} dx = \frac{1}{6} \arctan \frac{x+2}{2} (+c)$ arctan condone omission of + c)	M1A1
			(4)
(ii)	$27 - 6x - x^{2} = -(x^{2} + 6x - 27)$ $= -((x + 3)^{2} - 36)$	Obtains $-((x+3)^2 +)$ or $-(x+3)^2 +$	M1
	$-((x+3)^2-36)$ or $36-(x+3)^2$		A1
	$\int \frac{1}{\sqrt{27 - 6x - x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{36 - (x^2)^2}} \mathrm{d}x$	$\overline{(x+3)^2} \mathrm{d}x = \arcsin\left(\frac{x+3}{6}\right)(+c)$	
	$(Or = -\arccos\left(\frac{\lambda}{2}\right)$	$\left(\frac{c+3}{6}\right)(+c)$	M1A1
	M1: Use of arcsin	(or – arccos)	
	A1: Fully correct expression (condone omission of $+ c$)	
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
3	$\mathbf{M} = \begin{pmatrix} 3 & -4 \\ 1 & -2 \\ 1 & -5 \end{pmatrix}$	$ \begin{pmatrix} k \\ k \\ 5 \end{pmatrix} $	
(a)	$ \mathbf{M} - \lambda \mathbf{I} = \mathbf{M} = \begin{vmatrix} 3 - \lambda & -4 \\ 1 & -2 - \lambda \\ 1 & -5 \end{vmatrix}$ $(0) + 4[2 - k] + k$ Attempts $ \mathbf{M} - \lambda \mathbf{I} $	$\begin{vmatrix} k \\ k \\ 5 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & -4 & k \\ 1 & -5 & k \\ 1 & -5 & 2 \end{vmatrix}$ $k [-5 + 5]$ using $\lambda = 3$	M1
	(0)+4[2-k]+k[-5+ Uses $ \mathbf{M}-\lambda\mathbf{I} =0$ and	$5] = 0 \Longrightarrow k = \dots$ I solves for k	M1
	k=2 Ca	0	A1 (2)
(b)	$(3-\lambda)[(\lambda+2)(\lambda-5)+10]+4(5-\lambda)$ Attempts $ \mathbf{M}-\lambda\mathbf{I} =0$ usin	$(-\lambda - 2) + 2(-5 + 2 + \lambda) = 0$ ng their value of k	(3) M1
	$\Rightarrow (3-\lambda) \Big[(\lambda+2)(\lambda + 2)(\lambda + $	-5)+12 = 0 $\Rightarrow (\lambda - 2)(\lambda - 1) = 0 \Rightarrow \lambda =$ 3TQ to find the other eigenvalues solve $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$)	M1
	$\lambda = 1, 2$ Co	rrect values	A1
			(3)
(c)	$ \begin{pmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{3x-4y+2z=3y}_{x-2y+2z=3y}_{x-5y+5z=3z} $	$\begin{array}{c} x \\ y \\ z \\ z \\ z \\ \end{array} Uses the eigenvalue 3 and their k \\ to form at least 2 equations in x, \\ y and z \\ \end{array}$	M1
	$\alpha \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ (\alpha a constant)	Any correct eigenvector. Allow any constant multiple of $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	A1
	$\frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}$	Correct normalised vector	A1
			(3) Total 9

Question Number	Scheme	Notes	Marks
4.	$I_n = \int x^n c$	$\cos x \mathrm{d} x$	
(a)	$\int x^{n} \cos x dx = x^{n} \sin x - \int nx^{n-1} \sin x dx$ M1: Parts in the correct direction A1: Correct expression		
	$= x^{n} \sin x - \left\{ -nx^{n-1} \cos x + \int n(n-1)x^{n-2} \cos x dx \right\}$ Uses integration by parts again (dependent on the first M)		
	$= x^{n} \sin x + nx^{n-1} \cos x$ Fully correct proof	$x - n(n-1)I_{n-2}$ * f with no errors	A1*
			(4)
ALT	f	٢	
	$I_n = \int x^n \cos x \mathrm{d}x =$	$\int x^{n-1} (x \cos x) \mathrm{d}x$	
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \int x^{n-2} (x \sin x + \cos x) dx$		M1A1
	M1: Parts in the co A1: Correct e	orrect direction expression	
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \int x^{n-1} \sin x dx - (n-1) I_{n-2}$		
	$ = x^{n} \sin x + x^{n-1} \cos x - (n-1) \{-x^{n-1} \cos x + (n-1)I_{n-2}\} - (n-1)I_{n-2} $ Uses integration by parts again (dependent on the first M)		dM1
	$= r^{n} \sin r + nr^{n-1} \cos r - n(n-1)I *$		
	Fully correct proo	f with no errors	A1*
(b)	$I_0 = \sin x \ (+k)$		B1
	$I_4 = x^4 \sin x + 4x^3 \cos x - 12I_2$ App I_2	plies the reduction formula once for I_4 or	M1
	$= x^{4} \sin x + 4x^{3} \cos x - 12 \left(x^{2} \sin x + 2x \cos x - 2I_{0} \right)$		
	Applies the reduction formula again and obtains an expression for I_4 which can include I_0 but not I_2		
	$=(x^4-12x^2+24)\sin x+$	$-(4x^3-24x)\cos x+c$	
	Award A1 for either brack If the answer is not factorised but is	tet and A1 for the other s otherwise correct, award A1A0	A1A1
			(5)
			Total 9

Question Number	Scheme	Notes	Mark	S
5	$\frac{x^2}{25} - \frac{y^2}{4} = 1 y = mx + c$			
(a)) $\frac{x^2}{25} - \frac{(mx+c)^2}{4} = 1 \Rightarrow 4x^2 - 25(m^2x^2 + 2cmx + c^2) = 100$ Substitutes to obtain a quadratic in x and eliminates fractions			
	$4x^2 - 25(m^2x^2 + 2cm)$	$nx + c^2$) = 100		
	$\left(\Rightarrow \left(25m^2-4\right)x^2+50cm\right)$	$x + 25c^2 + 100 = 0$	A1	
	Correct 3'	TQ		
	$"b^{2} = 4ac" \Longrightarrow (50cm)^{2} = 4(2)$	$(25m^2 - 4)(25c^2 + 100)$	M1	
	$\frac{1}{2500^{-2}} = \frac{2}{2} = 2500^{-2} = \frac{2}{2} = 10000^{-2} = 1000^{-2}$			
	$2500c^{2}m^{2} = 2500c^{2}m^{2} + 10000m^{2} - 400c^{2} - 1600$ $10000m^{2} = 400c^{2} + 1600$ $25m^{2} = c^{2} + 4*$			
	Fully correct proof	with no errors		(4)
ALT 1	Using hyperbolic	parameters:		(-)
	$x = 5\cosh t, y = 2\sinh t$	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cosh t}{5\sinh t}$		
	$\frac{2\cosh t}{5\sinh t}(x-5\cosh t) = y-2\sinh t$ M1: Attempts the equation of the tangent A1: Correct equation (no simplification needed)		M1A1	
	$y = \frac{2\cosh t}{5\sinh t} x - \frac{2\cosh^2 t - 25\sinh^2 t}{\sinh t}$			
	$25m^{2} = \frac{4\cosh^{2} t}{\sinh^{2} t}, \ 4 + c^{2} = 4 + \frac{4}{\sinh^{2} t} = \frac{4\left(\sinh^{2} t + 1\right)}{\sinh^{2} t} = \frac{4\cosh^{2} t}{\sinh^{2} t}$			
	$\therefore 25m^2 = 4 + c^2 *$ Fully correct proof with no errors		A1*	
				(4)
ALT 2	Using trigonometric $x = 5 \sec t, y = 2 \tan t$	$\Rightarrow \frac{dy}{dt} = \frac{2 \sec t}{2}$		
	$\frac{2 \sec t}{5 \tan t} (x - 5 \sec t)$	$\frac{dx}{dx} = 5 \tan t$	M1A1	
	$y = \frac{2 \sec t}{5 \tan t} x + \frac{2 \tan^2 t}{5 \tan t}$	$\frac{2t - 2\sec^2 t}{\tan t}$		
	$25m^{2} = \frac{4\sec^{2} t}{\tan^{2} t} = \frac{4}{\sin^{2} t} \qquad 4 + c^{2} = 4\left(1 + \frac{1}{\tan^{2} t}\right)$	$\frac{1}{t} = 4 \left(\frac{\sin^2 t + \cos^2 t}{\sin^2 t} \right) = \frac{4}{\sin^2 t}$ Extracts	M1	
	$25m^2 \text{ and } 4 + c^2 \text{ from their equation}$ $25m^2 = 4 + c^2 *$		A 1 JL	
	Fully correct proof	with no errors	A1*	
			1	(4)

(b)	$25m^2 = c^2 + 4$ and $2 = m + c$		
	$25m^2 = (2-m)^2 + 4 \text{ or } 2$	$25(2-c)^2 = c^2 + 4$	M1
	Uses the given hyperbola and the straight lin	ne with the result from (a) to obtain an	111
	equation in r	<i>n</i> or <i>c</i>	
	$24m^2 + 4m - 8 = 0$		
	or Correct 3TQ in m or c		A1
	$24c^2 - 100c + 96 = 0$		
	$24m^2 + 4m - 8 = 0 \Longrightarrow m = \frac{1}{2}, -\frac{2}{3}$		
	Or	Solves their 3TQ in <i>m</i> or <i>c</i>	M1
	$24c^2 - 100c + 96 = 0 \Longrightarrow c = \frac{3}{2}, \frac{8}{3}$		
	$y = \frac{1}{2}x + \frac{3}{2}$ or $y = -\frac{2}{3}x + \frac{8}{3}$ One correct tangent		A1
	$y = \frac{1}{2}x + \frac{3}{2}$ and $y = -\frac{2}{3}x + \frac{8}{3}$	Both correct tangents	A1
			(5)
(c)	$m = \frac{1}{2}, c = \frac{3}{2} \Longrightarrow \frac{9}{4}x^2 + \frac{75}{2}$	$x + \frac{625}{4} = 0 \Longrightarrow x = \dots$	
	or		M1
	$m = -\frac{2}{3}, c = \frac{8}{3} \Rightarrow \frac{64}{9}x^2 - \frac{800}{9}x + \frac{2500}{9} = 0 \Rightarrow x =$		
	Uses one of their <i>m</i> and <i>c</i> p		
	$x = -\frac{25}{3}, y = -\frac{8}{3}$ or $x = \frac{25}{4}, y = -\frac{3}{2}$	One correct point	A1
	$x = -\frac{25}{3}, y = -\frac{8}{3}$ and $x = \frac{25}{4}, y = -\frac{3}{2}$	Both correct points	A1
			(3)
			Total 12

Question Number	Scheme	Notes	Marks		
6(a)	$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 \\ 1 \end{pmatrix}$	$ \begin{array}{ccc} -1 & 1 \\ 1 & 1 \\ 2 & a \end{array} $			
	$ \mathbf{A} = a - 2 + a - 1 + 2 - 1 (= 2a - 2)$	Correct determinant in any form	B1		
	$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a-1 & 1 \\ -a-2 & a-1 & 3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix}$ Applies the correct method to reach at least a matrix of cofactors				
	$ \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $				
	$\mathbf{A}^{-1} = \frac{1}{2a-2} \begin{pmatrix} a-2 & a+2 & -2\\ 1-a & a-1 & 0\\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse	A1		
(b)			(4)		
	$a = 4 \Longrightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft		
	$=\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$	Attempt to multiply the parametric form of l_2 by their inverse	M1		
	$= \begin{pmatrix} 6-\lambda\\ -4+4\lambda\\ 2-\lambda \end{pmatrix}$	Correct parametric form	A1		
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Correct equation (allow equivalent forms) but if given as $l =$ award A0	A1		
			(4)		
			Total 8		

	Alternatives for (b)		
(i)	$a = 4 \Longrightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix}$	Attempt \mathbf{A}^{-1} (point on l_2) and \mathbf{A}^{-1} (direction of l_2)	M1
	$\begin{bmatrix} 1\\ -3 & 3 & 0\\ 1 & -3 & 2 \end{bmatrix} \begin{pmatrix} -6\\ 2\\ 3 \end{bmatrix} = \frac{1}{6} \begin{pmatrix} -6\\ 24\\ -6 \end{pmatrix}$	Both correct (NB No ft)	A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)
(ii)	$a = 4 \Longrightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix}$ $\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \\ 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 30 \\ 0 \\ 6 \end{pmatrix}$	Attempt \mathbf{A}^{-1} (point on l_2) for 2 points Both correct (NB No ft)	M1 A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Obtain the direction vector and deduce correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)

Question Number	Scheme		Notes	Marks
7	$x = \cosh t + t$, $y = \cosh t - t$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sinh t + 1, \frac{\mathrm{d}y}{\mathrm{d}t} = \sinh t - 1$		Correct derivatives	B1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \sinh^2 t + 2s$ $= 2 \sinh^2 t + 2s$	$\sinh t + \frac{1}{2}h^2 t + \frac{1}{2}h^2 t + \frac{1}{2}h^2 h^2 h^2 h^2 h^2 h^2 h^2 h^2 h^2 h^2 $	$+1 + \sinh^2 t - 2\sinh t + 1$ +2	M1
	$-2(1+\sinh^2 t) - 2\cosh^2 t^*$	ancers	Uses $\cosh^2 t = 1 + \sinh^2 t$ to	Δ1*
	$-2(1+\sin i)-2\cos i$		complete the proof with no errors	A1 · (2)
(b)	$S = 2\pi \int y \mathrm{d}s = 2\pi \int (\cosh t - t) \sqrt{2} \cosh t$	t d <i>t</i>	Uses $S = 2\pi \int y ds$ with the given y and the result from part (a)	M1
	$=2\sqrt{2}\pi\int_0^{\ln 3}(\cosh^2 t - t\cosh t)dt^*$		Correct proof with no errors	A1*
				(2)
(c)	$\int \cosh^2 t \mathrm{d}t = \int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t \mathrm{d}t$		Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	M1
	$\int t \cosh t \mathrm{d}t = t \sinh t - \int \sinh t \mathrm{d}t$		Attempts integration by parts the right way round on <i>t</i> cosh <i>t</i>	M1
	5 5		Correct expression	Al
	$S = \left(2\sqrt{2}\pi\right) \int \left(\cosh^2 t - t\cosh t\right) dt = \left(2\operatorname{A1:} 2\operatorname{com}_{A1:A11}\right)$	$2\sqrt{2\pi}$	$\left\lfloor \frac{1}{2}t + \frac{1}{4}\sinh 2t - t\sinh t + \cosh t \right\rfloor$ rms	A1A1
	$(S=)2\sqrt{2}\pi\left\{\left(\frac{1}{2}\ln 3+\frac{1}{2}\ln 3\right)\right\}$	$\frac{10}{9}$ -	$\frac{4}{3}\ln 3 + \frac{5}{3} - (1) \bigg\}$	dM1
	dM1: Correct use of limits 0 and ln3	deper	nds on both preceding M marks	
	$S = \frac{1}{9}\sqrt{2}\pi \left(32 - 15\ln 3\right)$		cao	A1 (7)
				Total 12
	Alternative for (c)			
	$\int \cosh^2 t dt = \int \left(\frac{e + e}{2}\right) dt$ $= \frac{1}{4} \int \left(e^{2t} + 2 + e^{-2t}\right) dt$		Substitutes the exponential form and attempts to square	M1
	$\int t \cosh t \mathrm{d}t = \frac{1}{2} \int t \left(\mathrm{e}^t + \mathrm{e}^{-t} \right) \mathrm{d}t$		Substitutes the exponential form and attempts integration by parts	M1
	$=\frac{1}{2}te^{t}-\frac{1}{2}\int te^{t}dt-\left\{\frac{1}{2}te^{-t}-\frac{1}{2}\int e^{-t}dt\right\}$		the right way round Correct expression	A1
	$(S =)\left(2\sqrt{2}\pi\right)\left\{\frac{1}{4}\left(\frac{1}{2}e^{2t}+2t-\frac{1}{2}e^{2t}\right)\right\}$	-2t)-	$\frac{1}{2}te^{t} + \frac{1}{2}e^{t} + \frac{1}{2}te^{-t} - \frac{1}{2}e^{-t}$	A1A1
	A1. enner megral correct A1: other meg-	on for	S	
	Depends on both M marks above	-	Correct use of limits 0 and ln3	dM1
	$S = \frac{1}{9}\sqrt{2}\pi \left(32 - 15\ln 3\right)$		cao	A1

Alternative for the first 3 marks of (c)		
$=2\sqrt{2}\pi\int \left(\cosh^2 t - t\cosh t\right)\mathrm{d}t$		
$= 2\sqrt{2}\pi \int \cosh t \left(\cosh t - t\right) \mathrm{d}t$		
$2\sqrt{2}\pi \left(\left[\sinh t \left(\cosh t - t \right) \right] - \int \sinh t \left(\sinh t - 1 \right) dt \right)$		
Ϋ́Υ,		
$2\sqrt{2}\pi \left(\left[\sinh t \left(\cosh t - t \right) \right] - \left[\cosh t \left(s \right) \right] \right)$	$\sinh t - 1 \end{bmatrix} + \int \cosh^2 t dt$	M1A1
M1 (2 nd on e-PEN): Use parts twice	A1 Correct expression	
$\int \cosh^2 t \mathrm{d}t = \int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t \mathrm{d}t$	Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	M1 (1st on e-PEN)
Rest as main scheme		

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{n} = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -10+6 \\ -(2-9) \\ -2+15 \end{pmatrix}$	Attempt vector product between normal vectors	M1
	$= \begin{pmatrix} -4\\7\\13 \end{pmatrix}$	Correct vector	A1
	$x = 0 \Longrightarrow -5y + 3z = 11, -2y + 2z = 7$ $\Longrightarrow y = -\frac{1}{4}, z = \frac{13}{4}$ or $y = 0 \Longrightarrow x + 3z = 11, 3x + 2z = 7$	Correct strategy to find a point on <i>l</i>	M1
	$\Rightarrow x = -\frac{1}{7}, z = \frac{26}{7}$ or $z = 0 \Rightarrow x - 5y = 11, 3x - 2y = 7$ $\Rightarrow x = 1, y = -2$	Correct position vector of point on <i>l</i>	A1
	$\mathbf{r} = \mathbf{i} - 2\mathbf{j} + \lambda \left(-4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k}\right)$	Correct equation. (follow through their position and direction vectors but must be " $\mathbf{r} =$ ")	A1ft
	. 11 5 2-		(5)
ALI	x = 11 + 5y - 3z		
	$\Rightarrow y - \frac{7z}{13} = -\frac{26}{13} \left(z = \frac{13y}{7}\right)$ Eliminate one va	$\frac{+26}{7}$	M1
	$x = 11 + 5\left(-\frac{26}{13} + \frac{7z}{13}\right) \Longrightarrow z = \frac{13 - 13x}{4}$	Obtain 2 correct expressions for one of the variables	A1
	$\frac{x-1}{-\frac{4}{13}} = \frac{y+2}{\frac{7}{13}} = z$	M1 Obtain a Cartesian equation for <i>l</i> A1 Correct equation	M1A1
	$\mathbf{r} = (\mathbf{i} - 2\mathbf{j}) + \lambda \left(-\frac{4}{13}\mathbf{i} + \frac{7}{13}\mathbf{j} + \mathbf{k} \right)$ oe	Deduce a vector equation for <i>l</i> Follow through their Cartesian equation	A1ft
			(5)

			1
(b)	$ \begin{pmatrix} 3\\2\\1 \end{pmatrix} - \begin{pmatrix} 2\\0\\3 \end{pmatrix} = \begin{pmatrix} 1\\2\\-2 \end{pmatrix} $	Correct vector joining P to Q	B1
	$\begin{pmatrix} -4 \\ 7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} -40 \\ 5 \end{pmatrix}$	Attempt vector product between the direction of <i>l</i> and their $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$	M1
	$\begin{pmatrix} 7\\13 \end{pmatrix}^{\times} \begin{pmatrix} 2\\-2 \end{pmatrix}^{-} \begin{pmatrix} -3\\-15 \end{pmatrix}$	Correct vector	A1
	$\sin \theta = \frac{\left -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k}\right }{\left -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k}\right \left \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}\right }$	Angle between PQ and line n	
	$d = \left \overrightarrow{PQ} \right \sin \theta$		
	$d = \frac{ -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k} }{ -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k} } = \frac{1}{\sqrt{234}}\sqrt{40^2 + 5^2 + 15^2}$	Fully correct method for the distance	M1
	$d = \frac{5\sqrt{481}}{39}$	Cao Allow equivalent exact forms e.g. $d = \frac{5\sqrt{74}}{\sqrt{234}}$	A1
		V 23 1	(5)
ALT 1	$\mathbf{r}_{m} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix} \text{ or } \mathbf{r}_{n} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} + \mu \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix}$	Vector equation for either line with their direction vector from (a)	B1ft
	$\overrightarrow{OP} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} \overrightarrow{ON} = \begin{pmatrix} 3 - \frac{4}{7}\mu\\2 + \mu\\1 + \frac{13}{7}\mu \end{pmatrix} \overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu\\-2 - \mu\\2 - \frac{13}{7}\mu \end{pmatrix}$	Uses either P and the parametric form of a point on n OR Q and the parametric form of a point on m	
	$\begin{pmatrix} -1 + \frac{4}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{pmatrix} \begin{pmatrix} -\frac{4}{7} \\ 1 \\ \frac{13}{7} \end{pmatrix} = 0$	M1: Forms scalar product of vector <i>NP</i> and direction vector of <i>l</i> and equates to zero A1: Correct vectors	M1A1
	$\Rightarrow \mu = \frac{56}{117}$	Solves	M1
	$\Rightarrow d = \sqrt{\left(-\frac{85}{117}\right)^2 + \left(-\frac{290}{117}\right)^2 + \left(\frac{10}{9}\right)^2} = \frac{5\sqrt{481}}{39}$	Obtains the correct distance	A1
			(5)
	Alternative for M1A1M1		
	$\overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{pmatrix} \Rightarrow d = \sqrt{\left(-1 + \frac{4}{7}\mu\right)^2 + \left(-2 - \mu\right)^2}$	$\overline{\left(2-\frac{13}{7}\mu\right)^2} \Rightarrow d \text{ is min when } \Rightarrow \mu$	$r = \frac{56}{117}$
	M1: Find <i>d</i> in terms of a parameterA1: correct expressionM1: use calculus (or simplify and complete the square)	are) to find the parameter corresponding to	the min d

ALT 2	Correct vector PQ		B1
	$\begin{pmatrix} 1\\2\\-2 \end{pmatrix} \begin{pmatrix} -4\\7\\13 \end{pmatrix} = \begin{vmatrix} 1\\2\\-2 \end{vmatrix} \begin{vmatrix} -4\\7\\13 \end{vmatrix} \cos \theta$	Forms the scalar product and attempts to evaluate the LHS	M1
	$\cos\theta = \frac{-16}{3\sqrt{234}}$	Correct value for $\cos \theta$ exact or decimal	A1
	$d = PQ \sin\theta = 3\sqrt{1 - \left(\frac{-16}{3\sqrt{234}}\right)^2} = \frac{5\sqrt{74}}{\sqrt{234}}$	M1: Correct method for the distance. A1: Correct EXACT distance	M1A1
			(5)
			Total 10