

# Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL Further Pure Mathematics 3 (WFM03/01)



#### Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2016 Publications Code WFM03\_01\_1606\_MS All the material in this publication is copyright © Pearson Education Ltd 2016

#### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL IAL MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- \_ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

# General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

# 1. Factorisation

 $(x^2+bx+c) = (x+p)(x+q)$ , where |pq| = |c|, leading to  $x = \dots$ 

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to  $x = \dots$ 

# 2. Formula

Attempt to use the correct formula (with values for a, b and c).

# 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

# Method marks for differentiation and integration:

## 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

# 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

#### <u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question<br>Number | Scheme                                                                                                           | Notes                                                                              | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------|
| 1.                 | $y = 9\cosh x + 3\sinh x + 7x$                                                                                   |                                                                                    |       |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 9\sinh x + 3\cosh x + 7$                                                      | Correct derivative                                                                 | B1    |
|                    | $9\frac{\left(e^{x}-e^{-x}\right)}{2}+3\frac{\left(e^{x}+e^{-x}\right)}{2}+7=0$                                  | Replaces sinhx and coshx by the correct exponential forms                          | M1    |
|                    |                                                                                                                  | can score the other way round:                                                     |       |
|                    | M1: $y = 9 \frac{(e^x + e^{-x})}{2}$                                                                             | $\frac{x}{2} + 3\frac{\left(e^{x} - e^{-x}\right)}{2} + 7x$                        |       |
|                    | B1: $\frac{dy}{dx} = 9 \frac{\left(e^x - e\right)^2}{2}$                                                         | $\frac{-x}{2} + 3\frac{(e^{x} + e^{-x})}{2} + 7$                                   |       |
|                    | $12e^{2x} + 14e^{x} - 6 = 0$ oe                                                                                  | M1: Obtains a quadratic in e <sup>x</sup><br>A1: Correct quadratic                 | M1A1  |
|                    | $(3e^x-1)(2e^x+3)=0 \Rightarrow e^x=$                                                                            | Solves their quadratic as far as $e^x =$                                           | M1    |
|                    | $x = \ln\left(\frac{1}{3}\right)$                                                                                | cso (Allow –ln3) $e^x = -\frac{3}{2}$ need not be<br>seen. Extra answers, award A0 | A1    |
|                    | A 34                                                                                                             |                                                                                    | (6)   |
|                    | Alternative                                                                                                      |                                                                                    |       |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 9\sinh x + 3\cosh x + 7$                                                      | Correct derivative                                                                 | B1    |
|                    | $9\sinh x = -3\cosh x - 7 \Longrightarrow 81\sin x$                                                              | $nh^2 x = 9\cosh^2 x + 42\cosh x + 49$                                             |       |
|                    | $72\cosh^2 x - 42\cosh x - 130 = 0$                                                                              | Squares and attempts quadratic in coshx                                            | M1    |
|                    | $(3\cosh x - 5)(12\cosh x + 13) = 0 \Rightarrow \cosh x = \frac{5}{3}$ M1: Solves quadratic<br>A1: Correct value |                                                                                    | M1A1  |
|                    | $x = \ln\left(\frac{5}{3} \pm \sqrt{\left(\frac{5}{3}\right)^2 - 1}\right)$                                      | Use of ln form of arcosh                                                           | M1    |
|                    | $x = \ln\left(\frac{1}{3}\right)$                                                                                | cso (Allow – ln3)                                                                  | A1    |
|                    |                                                                                                                  |                                                                                    |       |

**NB:** Ignore any attempts to find the *y* coordinate

| Question<br>Number | Scheme                                                                                                                                                                           | Notes                                                                                                                  | Marks          |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| 2                  | $\frac{x^2}{25} + \frac{y^2}{4} = 1,  P(5\cos\theta, 2\sin\theta)$                                                                                                               |                                                                                                                        |                |  |  |
| (a)                | $\frac{dx}{d\theta} = -5\sin\theta, \ \frac{dy}{d\theta} = 2\cos\theta$ or $\frac{2x}{25} + \frac{2y}{4}\frac{dy}{dx} = 0$                                                       | Correct derivatives or correct implicit differentiation                                                                | B1             |  |  |
|                    | $\frac{2x}{25} + \frac{2y}{4}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{2\cos\theta}{-5\sin\theta}$                                                                               | Divides their derivatives correctly<br>or substitutes and rearranges                                                   | M1             |  |  |
|                    | $M_{N} = \frac{5\sin\theta}{2\cos\theta}$                                                                                                                                        | Correct perpendicular gradient rule                                                                                    | M1             |  |  |
|                    | $y - 2\sin\theta = \frac{5\sin\theta}{2\cos\theta} (x - 5\cos\theta)$                                                                                                            | Correct straight line method (any complete method) <b>Must</b> use their gradient of the normal.                       | M1             |  |  |
|                    | $5x\sin\theta - 2y\cos\theta = 21\sin\theta\cos\theta^*$                                                                                                                         | CSO                                                                                                                    | A1*            |  |  |
|                    |                                                                                                                                                                                  |                                                                                                                        | (5)            |  |  |
| (b)                | At $Q, x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$                                                                                                                            |                                                                                                                        | B1             |  |  |
|                    | $M \text{ is } \left(\frac{0+5\cos\theta}{2}, \frac{2\sin\theta - \frac{21}{2}\sin\theta}{2}\right)$ $\left(=\left(\frac{5}{2}\cos\theta, -\frac{17}{4}\sin\theta\right)\right)$ | Correct mid-point method for at<br>least one coordinate<br>Can be implied by a correct <i>x</i><br>coordinate          | M1             |  |  |
|                    | L cuts x-axis at $\frac{21}{5}\cos\theta$                                                                                                                                        |                                                                                                                        | B1             |  |  |
|                    | Area $OPM = OLP + OLM$<br>$\frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot 2 \sin \theta + \frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot \frac{17}{4} \sin \theta$           | M1: Correct triangle area method<br>using their coordinates                                                            | M1A1           |  |  |
|                    | 2  5  2  5  4  3  10  4  10  10  10  10  10  10                                                                                                                                  | A1: Correct expression                                                                                                 |                |  |  |
|                    | $=\frac{105}{16}\sin 2\theta$                                                                                                                                                    | Or $6.5625 \sin 2\theta$ must be positive                                                                              | A1( <b>6</b> ) |  |  |
|                    |                                                                                                                                                                                  |                                                                                                                        | Total 11       |  |  |
|                    | ALTs for (b)                                                                                                                                                                     |                                                                                                                        |                |  |  |
| 1                  | Using Area OPM                                                                                                                                                                   |                                                                                                                        |                |  |  |
|                    | See above for B1M1                                                                                                                                                               |                                                                                                                        | B1M1           |  |  |
|                    |                                                                                                                                                                                  | M1: Correct determinant with their coords, with 2 or 3 points. $\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$ should be    | MIA1           |  |  |
|                    | Area $\Delta OPM = \frac{1}{2} \begin{vmatrix} 0 & 5\cos\theta & \frac{5}{2}\cos\theta & 0\\ 0 & 2\sin\theta & -\frac{17}{4}\sin\theta & 0 \end{vmatrix}$                        | at both or neither end.<br>A1: Correct determinant (There are<br>more complicated determinants using<br>the 3 points.) |                |  |  |

| г | <b>) / /</b> | 17 |
|---|--------------|----|
| г | - IVI        |    |
|   |              |    |

|   | PhysicsAndMathsT                                                                                                                                                                                                                    | - 1                                                                  |      |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
|   | $=\frac{1}{2}\left(0+5\sin\theta\cos\theta+0-0+\frac{85}{4}\sin\theta\cos\theta-0\right)$                                                                                                                                           | A1                                                                   | A1   |
|   | $=\frac{105}{4}\sin\theta\cos\theta$                                                                                                                                                                                                |                                                                      |      |
|   | $=\frac{105}{16}\sin 2\theta$                                                                                                                                                                                                       |                                                                      | A1   |
| 2 | Using Area <i>OPQ</i> :                                                                                                                                                                                                             |                                                                      |      |
|   | At $Q, x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$                                                                                                                                                                               |                                                                      | B1   |
|   | Area $\Delta OPQ = \frac{1}{2} \begin{vmatrix} 5\cos\theta & 0\\ 2\sin\theta & -\frac{21}{2}\sin\theta \end{vmatrix}$                                                                                                               | Can be implied by the following line                                 | M1A1 |
|   | $=\frac{1}{2}\times\frac{105}{2}\sin\theta\cos\theta$                                                                                                                                                                               | OQ is base, x coord of P is height                                   | A1   |
|   | $=\frac{105}{8}\sin 2\theta$                                                                                                                                                                                                        |                                                                      |      |
|   | Area $OPM = \frac{1}{2}$ Area $OPQ$                                                                                                                                                                                                 |                                                                      | M1   |
|   | $=\frac{105}{16}\sin 2\theta$                                                                                                                                                                                                       |                                                                      | A1   |
| 3 | At $Q, x = 0 \Rightarrow y = -\frac{21}{2}\sin\theta$                                                                                                                                                                               |                                                                      | B1   |
|   | $M \text{ is } \left(\frac{0+5\cos\theta}{2}, \frac{2\sin\theta - \frac{21}{2}\sin\theta}{2}\right) \qquad \left(=\right)$                                                                                                          | $\left(\frac{5}{2}\cos\theta, -\frac{17}{4}\sin\theta\right)\right)$ | M1   |
|   | $OP = \sqrt{4\sin^2\theta + 25\cos^2\theta} \left(=\sqrt{4+21\cos^2\theta}\right)$                                                                                                                                                  |                                                                      | B1   |
|   | $d = \frac{\frac{5}{2}\cos\theta \times \frac{2\sin\theta}{5\cos\theta} + \frac{17}{4}\sin\theta}{\sqrt{\frac{4\sin^2\theta}{25\cos^2\theta} + 1}} = \frac{\frac{21}{4}\sin\theta}{\sqrt{\frac{4+21\cos^2\theta}{25\cos^2\theta}}}$ |                                                                      |      |
|   | Area = $\frac{1}{2} \times \frac{\frac{21}{4} \sin \theta}{\sqrt{\frac{4+21 \cos^2 \theta}{25 \cos^2 \theta}}} \times \sqrt{4+21 \cos^2 \theta}$                                                                                    |                                                                      | M1A1 |
|   | $=\frac{105}{16}\sin 2\theta$                                                                                                                                                                                                       |                                                                      | A1   |
|   |                                                                                                                                                                                                                                     |                                                                      |      |
|   |                                                                                                                                                                                                                                     |                                                                      |      |

| Question<br>Number | Scheme                                                                                                                                                                                | Notes                                                                                                                           | Marks    |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|
| 3(a)               | $x^2 + 4x + 13 \equiv (x+2)^2 + 9$                                                                                                                                                    |                                                                                                                                 | B1       |
|                    | $\int \frac{1}{\left(x+2\right)^2+9} dx = \frac{1}{3} \arctan\left(\frac{x+2}{3}\right)$                                                                                              | M1: karctan f $(x)$ .                                                                                                           | M1A1     |
|                    | $\int (x+2)^2 + 9 = 3 = (-3)$                                                                                                                                                         | A1: Correct expression                                                                                                          | 1011711  |
|                    | $\left[\frac{1}{3}\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^{1} = \frac{1}{3}\left(\arctan 1 - \arctan 0\right)$                                                                  | Correct use of limits<br>arctan0 need not be shown                                                                              | M1       |
|                    | $\frac{\pi}{12}$                                                                                                                                                                      | сао                                                                                                                             | A1       |
|                    |                                                                                                                                                                                       |                                                                                                                                 | (5)      |
| ALT:               | Sub $x + 2 = 3 \tan t$<br>$x^{2} + 4x + 13 \equiv (x + 2)^{2} + 9$                                                                                                                    |                                                                                                                                 | D1       |
|                    | x + 4x + 15 = (x + 2) + 9                                                                                                                                                             |                                                                                                                                 | B1       |
|                    | $\frac{dx}{dt} = 3\sec^2 t$ $x = -2$ , $\tan t = 0$ , $t = 0$ ; $x = 1$ ,                                                                                                             | $\tan t = 1, \ t = \frac{\pi}{4}$                                                                                               |          |
|                    | $\int \frac{3\sec^2 t}{9\tan^2 t + 9} dt = \frac{1}{3} \int dt = \frac{1}{3} t$                                                                                                       | M1 sub and integrate inc use of<br>$\tan^2 + 1 = \sec^2$<br>A1 Correct expression Ignore limits                                 | M1A1     |
|                    | $\cdots \left[\frac{\pi}{12}\right]_{0}^{\frac{\pi}{4}}.$                                                                                                                             | Either change limits and substitute<br>Or reverse substitution and substitute<br>original imits                                 | M1       |
|                    | $\frac{\pi}{12}$                                                                                                                                                                      | cao                                                                                                                             | A1       |
| (b)                | $4x^2 - 12x + 34 = 4\left(x - \frac{3}{2}\right)^2 + 25$                                                                                                                              | M1: $4(x \pm p)^2 \pm q, (p, q \neq 0)$                                                                                         | -        |
|                    | or $(2x-3)^2 + 25$                                                                                                                                                                    | A1: $4\left(x-\frac{3}{2}\right)^2 + 25$                                                                                        | M1A1     |
|                    | $\int \frac{1}{\sqrt{4\left(x-\frac{3}{2}\right)^2+25}}  \mathrm{d}x = \frac{1}{2} \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^2}}  \mathrm{d}x$                                   | $\overline{\int_{1}^{2} + \frac{25}{4}} dx = \frac{1}{2} \operatorname{arsinh}\left(\frac{x - \frac{3}{2}}{\frac{5}{2}}\right)$ | M1A1     |
|                    | M1: $karsinh f(x)$ . A1: C                                                                                                                                                            |                                                                                                                                 |          |
|                    | $\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{x-\frac{3}{2}}{\frac{5}{2}}\right)\right]_{-1}^{4} = \frac{1}{2}\left(\operatorname{arsinh}(1) - \operatorname{arsinh}(-1)\right)$ | 1)) Correct use of limits                                                                                                       | M1       |
|                    | $= \frac{1}{2} \left( \ln\left(1 + \sqrt{2}\right) - \ln\left(-1 + \sqrt{2}\right) \right)$ $= \frac{1}{2} \ln\left(3 + 2\sqrt{2}\right) \text{ or } \ln\left(1 + \sqrt{2}\right)$    | Uses the logarithmic form of arsinh                                                                                             | M1       |
|                    | $=\frac{1}{2}\ln\left(3+2\sqrt{2}\right) \text{ or } \ln\left(1+\sqrt{2}\right)$                                                                                                      | cao                                                                                                                             | A1       |
|                    |                                                                                                                                                                                       |                                                                                                                                 | (7)      |
|                    |                                                                                                                                                                                       |                                                                                                                                 | Total 12 |
|                    |                                                                                                                                                                                       |                                                                                                                                 |          |
|                    |                                                                                                                                                                                       |                                                                                                                                 |          |

PhysicsAndMathsTutor.com

| ALT: | Second M1A1                                                                                                                                                                                                                |                                                                                                                       |      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|
|      | Sub $2x - 3 = u$ or $2x - 3 = u$                                                                                                                                                                                           | $=5\sinh u$                                                                                                           |      |
|      | $\int_{\operatorname{arsinh}^{-1}}^{\operatorname{arsinh}^{1}} \frac{1}{\sqrt{25 \operatorname{sinh}^{2} u + 25}} 5 \cosh u \mathrm{d}u = \left[\frac{1}{2} \operatorname{arsinh}\left(\frac{u}{5}\right)\right]_{-5}^{5}$ | $\int_{-5}^{5} \frac{1}{2\sqrt{u^2 + 25}} du = \left[\frac{1}{2}\operatorname{arsinh}\left(\frac{u}{5}\right)\right]$ | M1A1 |
|      |                                                                                                                                                                                                                            |                                                                                                                       |      |
|      |                                                                                                                                                                                                                            |                                                                                                                       |      |
|      |                                                                                                                                                                                                                            |                                                                                                                       |      |

| Question<br>Number | Scheme                                                                                                                                                                                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                     | Marks        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 4                  | $\mathbf{M} = \begin{pmatrix} 1 & k & 0 \\ -1 & 1 & 1 \\ 1 & k & 3 \end{pmatrix}$                                                                                                                                                         | $\begin{pmatrix} 0\\1\\3 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                   |              |
| (a)                | $ \mathbf{M}  = 3 - k - k(-3 - 1)(= 3k + 3)$                                                                                                                                                                                              | Correct determinant in any form                                                                                                                                                                                                                                                                                                                                                           | B1           |
|                    | $\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & -1 & 1 \\ k & 1 & k \\ 0 & 1 & 3 \end{pmatrix} \text{ or minors} \begin{pmatrix} 3-k & -4 & -k-2 \\ 3k & 3 & 0 \\ k & 1 & 1+k \end{pmatrix}$                                               | $ 1 \ ) \text{or cofactors} \begin{pmatrix} 3-k & 4 & -k-1 \\ -3k & 3 & 0 \\ k & -1 & 1+k \end{pmatrix} $                                                                                                                                                                                                                                                                                 | B1           |
|                    | $\mathbf{M}^{-1} = \frac{1}{3+3k} \begin{pmatrix} 3-k & -3k & k \\ 4 & 3 & -1 \\ -k-1 & 0 & 1+k \end{pmatrix}$                                                                                                                            | <ul> <li>M1: Identifiable full attempt at<br/>inverse including reciprocal<br/>of determinant. Could be<br/>indicated by at least 6 correct<br/>elements.</li> <li>A1ft: Two rows or two<br/>columns correct (follow<br/>through their determinant<br/>but not incorrect entries in the<br/>matrices used)</li> <li>A1ft: Fully correct inverse<br/>(follow through as before)</li> </ul> | M1A1ftA1ft   |
|                    | <b>NB:</b> If every element is the negative of the corre                                                                                                                                                                                  | ect element, allow M1A1A0                                                                                                                                                                                                                                                                                                                                                                 | (5)          |
| (b)                | $\mathbf{MN} = \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \Rightarrow \mathbf{N} = \mathbf{M}^{-1} \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$                                          | Correct statement                                                                                                                                                                                                                                                                                                                                                                         | B1           |
|                    | $\mathbf{N} = \frac{1}{3} \begin{pmatrix} 3 & 0 & 0 \\ 4 & 3 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 6 \\ 4 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 6 \\ 7 & 5 & 10 \\ 0 & -1 & -3 \end{pmatrix}$ | M1: Multiplies the given<br>matrix by their $\mathbf{M}^{-1}$ in the<br>correct order Must include the<br>" $\frac{1}{3}$ "<br>A2: Correct matrix (-1 each<br>error). If left with $\frac{1}{3}$ outside<br>the matrix award A0                                                                                                                                                           | M1A(2, 1, 0) |
|                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                           | (4)          |
|                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                           | Total 9      |
|                    |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                           |              |

| $\frac{\text{Alternative I}}{(1 + \frac{1}{\sqrt{3}}) + \frac{\pi}{6}} = \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} + \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                            | Question<br>Number | Scheme                                                                                                                                      |                                       | Notes                     | Marks   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|---------|--|
| $\frac{=\frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x \\ *} \qquad A1: Correct completion with no errors A1}{x}$ $\frac{A1: Correct completion with no errors A1}{x}$ $\frac{A1: Correct completion with no errors A1}{x}$ $\frac{A1: Correct differentiation to obtain a function of x}{x}$ $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sch}^2 y} = \frac{-\sin x}{1-\cos^2 x}$ $\frac{A1: Correct differentiation to obtain a function of x}{x}$ $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sch}^2 y} = -\cos x \\ *$ $A1: Correct completion with no errors A1$ $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sch}^2 y} = -\cos x \\ *$ $A1: Correct differentiation to obtain a function of x} A1$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{\sin x} = -\csc x \\ *$ $A1: Correct completion with no errors A1$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1-\cos x} = -\csc x \\ *$ $A1: Correct differentiation to obtain a function of x} A1$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)-\sin x(1+\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{\sin x(1-\cos x)}{(1-\cos x)^2}$ $\frac{dy}{dx} = \frac{1}{2} x \frac{1-\cos x}{1+\cos x} - \frac{1}{2} x 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5(a)               | $y = \operatorname{artanh}(\cos x)$                                                                                                         |                                       |                           |         |  |
| Alternative 1Alternative 1tanh $y = \cos x \Rightarrow \operatorname{sech}^2 y \frac{dy}{dx} = -\sin x$ $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-\sin x}{1-\cos^2 x}$ Correct differentiation to<br>obtain a function of x $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-1}{\sin x} = -\operatorname{cosec} x$<br>$\sin x = -\operatorname{cosec} x$ A1:Alternative 2artanh(\cos x) = $\frac{1}{2}\ln\left(\frac{1+\cos x}{1-\cos x}\right)$ Correct differentiation to<br>obtain a function of xMIdifferentiation ( $\sin x$ ) $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1-\cos x}$ Alternative 2artanh( $\cos x$ ) = $\frac{1}{2}\ln\left(\frac{1+\cos x}{1-\cos x}\right)$ Correct differentiation to<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - \cos^2 x} \times -\sin x$                                                                   | Correct use of the chain rule         |                           | M1      |  |
| Alternative 1 $tanh y = \cos x \Rightarrow \operatorname{sech}^2 y \frac{dy}{dx} = -\sin x$ $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-\sin x}{1-\cos^2 x}$ Correct differentiation to<br>obtain a function of x $u = \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$ A1: Correct completion<br>with no errors $u = \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$ A1: Correct differentiation to<br>obtain a function of x $u = \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$ A1: Correct differentiation to<br>obtain a function of x $u = \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x$ A1: Correct differentiation to<br>obtain a function of x $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to<br>obtain a function of x $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct completion<br>with no errors $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to<br>obtain a function of x $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct opletion<br>with no errors $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ A1: $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x)}{(1-\cos x)^2}$ M1A1 $\frac{dy}{dx} = \frac{1}{2} (1-\cos^2 x) = -\csc x$<br>$\frac{\pi}{2}$ A1: Correct completion<br>with no errors $\frac{dy}{dx} = \frac{1}{2} \operatorname{sech} (\cos x) + x \int_{0}^{\pi} \frac{1}{2} \operatorname{artanh} (\cos x) - \int \sin x \times -\operatorname{cosecx} dx$<br>$\frac{\pi}{6} (-(0))$<br>M1:M1A1M1: Correct use of limits on either part (provided both parts are integrated). Lower<br>limit need not be shownM1 $\frac{1}{4} \ln (\frac{1+\frac{\sqrt{3}}{2}}) + \frac{\pi}{6}$ Use of the logarithmic form of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                                                                             | A1: Correct                           | completion with no errors | A1      |  |
| $\frac{dy}{dx} = \frac{-\sin x}{\sec^2 y} = \frac{-\sin x}{1-\cos^2 x}$ Correct differentiation to obtain a function of x M1 $= \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x  *$ A1: Correct completion with no errors A1 $\frac{dy}{dx} = \frac{1}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x  *$ A1: Correct completion with no errors A1 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1-\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to obtain a function of x M1 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to obtain a function of x M1 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to obtain a function of x M1 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to obtain a function of x M1 $\frac{-2\sin x}{2(1-\cos^2 x)} = -\csc x  *$ A1: Correct completion with no errors A1: Correct completion with no errors A1: Correct completion with no errors A1: Correct expression $\frac{\sin x \operatorname{artanh}(\cos x) + x}{\sin x} = \frac{1}{2}\operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0))$ M1: Correct use of limits on either part (provided both parts are integrated). Lower limit need not be shown $\frac{1}{1+4\ln\left(\frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6}}{\frac{1}{6}}$ Use of the logarithmic form of artanh M1 $\frac{1}{1+4\ln(1+4\sqrt{3}) + \frac{\pi}{6}} \operatorname{or} \frac{1}{2}\ln(2+\sqrt{3}) + \frac{\pi}{6}}{\frac{1}{6}}$ Cao (oe) A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                                                                                             |                                       |                           | (2)     |  |
| $\frac{dy}{dx} = \frac{-\sin x}{\operatorname{sech}^2 y} = \frac{-\sin x}{1 - \cos^2 x} \qquad \begin{array}{c} \text{Correct differentiation to} \\ \text{obtain a function of } x \\ \text{M1} \\ \hline \\ = \frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\operatorname{cosec} x \\ * \\ \end{array} \qquad \begin{array}{c} \text{A1: Correct completion} \\ \text{with no errors} \\ \end{array} \qquad \begin{array}{c} \text{A1} \\ \text{A1: } \\ \hline \\ \text{M2} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \\ = \frac{-1}{2} \ln \left( \frac{1 + \cos x}{1 - \cos x} \right) \\ \hline \\ \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \\ \hline \\ \begin{array}{c} \text{Correct differentiation to} \\ \text{obtain a function of } x \\ \hline \\ \text{M1} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \\ \hline \\ \begin{array}{c} \text{Correct differentiation to} \\ \text{obtain a function of } x \\ \hline \\ \text{M1} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \\ \hline \\ \text{Correct completion} \\ \text{with no errors} \\ \hline \\ \begin{array}{c} \text{M1} \\ \hline \\ \frac{1 - 2(1 - \cos^2 x)}{2(1 - \cos^2 x)} = -\operatorname{cosec} x \\ \times \\ \hline \\ \begin{array}{c} \text{M1} \\ \text{M2} \\ \hline \\ \text{M1} \\ \hline \\ \text{M1} \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \frac{1}{2} \cos x \arctan(\cos x) dx = \sin x \arctan(\cos x) - \int \sin x \times -\operatorname{cosec} x dx \\ \text{M1A1} \\ \hline \\ \frac{1}{2} \sin (\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosec} x dx \\ \hline \\ \text{M1A1} \\ \hline \\ \hline \\ \begin{array}{c} \frac{1}{2} \sin (\cos x) + x \end{bmatrix}_{0}^{\frac{\pi}{2}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) \\ \hline \\ \text{M1} \\ \hline \\ \frac{1}{2} \sin \left(\frac{1 + \frac{\pi^2}{2}}{1 - \frac{\pi^2}{2}}\right) + \frac{\pi}{6} \\ \hline \\ \hline \\ \begin{array}{c} \text{Use of the logarithmic form of artanh \\ \text{M1} \\ \hline \\ \frac{1}{2} \frac{1}{4} \ln (7 + 4\sqrt{3}) + \frac{\pi}{6} \operatorname{cr} \frac{1}{2} \ln (2 + \sqrt{3}) + \frac{\pi}{6} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ļ                  |                                                                                                                                             |                                       | 1                         |         |  |
| $\frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x \\ * \qquad A1: Correct completion with no errors \qquad A1$ $\frac{1+\cos x}{\sin^2 x} = \frac{-1}{\sin x} = -\csc x \\ * \qquad A1: Correct completion with no errors \qquad A1$ $\frac{1+\cos x}{\sin x} = \frac{1}{2} \ln \left(\frac{1+\cos x}{1-\cos x}\right) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | $\tanh y = \cos x \Longrightarrow \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = -\sin x$                                        | 1 <i>x</i>                            |                           |         |  |
| Alternative 2 $artanh(\cos x) = \frac{1}{2} ln \left(\frac{1+\cos x}{1-\cos x}\right)$ $dy = \frac{1}{2} \times \frac{1-\cos x}{1+\cos x} \times \frac{-\sin x(1-\cos x) - \sin x(1+\cos x)}{(1-\cos x)^2}$ Correct differentiation to obtain a function of xM1 $= \frac{-2\sin x}{2(1-\cos^2 x)} = -\csc x$ A1: Correct completion with no errorsA1(b) $\int \cos x \arctan(\cos x) dx = \sin x \arctan(\cos x) - \int \sin x \times -\csc x dx$ M1A1M1: Parts in the correct direction A1: Correct expressionM1A1 $[\sin x \operatorname{artanh}(\cos x) + x]_0^{\frac{\pi}{2}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0))$ M1M1: Correct use of limits on either part (provided both parts are integrated). Lower<br>limit need not be shownM1 $= \frac{1}{4} \ln\left(\frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6}$ Use of the logarithmic form of artanhM1 $= \frac{1}{4} \ln(7+4\sqrt{3}) + \frac{\pi}{6} \operatorname{or} \frac{1}{2} \ln(2+\sqrt{3}) + \frac{\pi}{6}$ Cao (oe)A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\sin x}{\mathrm{sech}^2 y} = \frac{-\sin x}{1 - \cos^2 x}$                                        |                                       |                           | M1      |  |
| $\frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \qquad \text{Correct differentiation to} \\ \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \qquad \text{Correct differentiation to} \\ \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \qquad \text{Correct differentiation to} \\ \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x(1 - \cos x) - \sin x(1 + \cos x)}{(1 - \cos x)^2} \qquad \text{A1: Correct completion} \\ \frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{2(1 - \cos^2 x)} = -\csc x}{\frac{1}{2} \times \frac{1 - \cos^2 x}{2(1 - \cos^2 x)}} \qquad \text{A1: Correct completion} \\ \frac{dy}{dx} = \frac{1}{2} \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosecx} dx \\ \frac{dy}{dx} = \frac{1}{2} \operatorname{artanh}(\cos x) + x \right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) \\ \frac{dy}{dx} = \frac{1}{4} \ln\left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{4} \ln\left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{4} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{4} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{4} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ \frac{dy}{dx} = \frac{1}{2} \ln\left(\frac{1 + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}}\right) +$                                                                                                                                                              |                    | $=\frac{-\sin x}{\sin^2 x} = \frac{-1}{\sin x} = -\operatorname{cosec} x  *$                                                                |                                       | _                         | A1      |  |
| $\frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x (1 - \cos x) - \sin x (1 + \cos x)}{(1 - \cos x)^2} \qquad \text{Correct differentiation to} \\ \text{obtain a function of } x \qquad \text{M1}$ $= \frac{-2 \sin x}{2(1 - \cos^2 x)} = -\csc x \\ \text{*} \qquad \text{A1: Correct completion} \\ \text{with no errors} \qquad \text{A1}$ $\frac{1}{2} \qquad \text{M1A1} \\ \frac{1}{2} \qquad \frac{1}$ |                    | Alternative 2                                                                                                                               |                                       |                           |         |  |
| $= \frac{-2 \sin x}{2(1 - \cos^2 x)} = -\csc x \\ * \qquad A1: Correct completion with no errors \qquad A1$ (b) $\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosecx} dx \\ M1A1$ $\underbrace{M1: \operatorname{Parts} \text{ in the correct direction A1: Correct expression}}_{\left[\sin x \operatorname{artanh}(\cos x) + x\right]_{0}^{\frac{\pi}{6}}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) \\ M1: \operatorname{Correct use of limits on either part (provided both parts are integrated). Lower \\ \operatorname{limit need not be shown}} = \frac{1}{4} \ln\left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \\ Use of the logarithmic form of artanh \\ \operatorname{M1} = \frac{1}{4} \ln\left(7 + 4\sqrt{3}\right) + \frac{\pi}{6} \operatorname{or} \frac{1}{2} \ln\left(2 + \sqrt{3}\right) + \frac{\pi}{6} \\ \operatorname{Cao}(oe) \\ \operatorname{The last 2 M marks may be gained in} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | $\operatorname{artanh}(\cos x) = \frac{1}{2} \ln \left( \frac{1 + \cos x}{1 - \cos x} \right)$                                              | $\left(\frac{\cos x}{\sin x}\right)$  |                           |         |  |
| (b) $\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosecx} dx \qquad \text{M1A1}$ $\frac{\text{M1: Parts in the correct direction A1: Correct expression}}{\left[\sin x \operatorname{artanh}(\cos x) + x\right]_{0}^{\frac{\pi}{6}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) \qquad \text{M1}$ $\frac{1}{4} \ln\left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} \qquad \text{Use of the logarithmic form of artanh} \qquad \text{M1}$ $\frac{1}{4} \ln\left(7 + 4\sqrt{3}\right) + \frac{\pi}{6} \operatorname{or} \frac{1}{2} \ln\left(2 + \sqrt{3}\right) + \frac{\pi}{6} \qquad \text{Cao (oe)} \qquad \text{A1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | $\frac{dy}{dx} = \frac{1}{2} \times \frac{1 - \cos x}{1 + \cos x} \times \frac{-\sin x (1 - \cos x) - \sin x (1 + \cos x)}{(1 - \cos x)^2}$ |                                       |                           | M1      |  |
| $\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosecx} dx \qquad \text{M1A1}$ $\frac{\text{M1S} \operatorname{Parts} \text{ in the correct direction A1: Correct expression}}{\left[\sin x \operatorname{artanh}(\cos x) + x\right]_{0}^{\frac{\pi}{6}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) \qquad \text{M1}$ $\frac{\text{M1S} \operatorname{Correct} \text{ use of limits on either part (provided both parts are integrated). Lower limit need not be shown}}{\left[\frac{1}{4}\ln\left(\frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6}}{\left(\frac{1}{2}\ln\left(2+\sqrt{3}\right) + \frac{\pi}{6}}\right]} \qquad \text{Use of the logarithmic form of artanh} \qquad \text{M1}$ $\frac{1}{4}\ln\left(7+4\sqrt{3}\right) + \frac{\pi}{6} \operatorname{or} \frac{1}{2}\ln\left(2+\sqrt{3}\right) + \frac{\pi}{6} \qquad \text{Cao (oe)} \qquad \text{A1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | $=\frac{-2\sin x}{2(1-\cos^2 x)}=-\csc x$                                                                                                   |                                       | -                         | A1      |  |
| $\begin{bmatrix} \sin x \operatorname{artanh}(\cos x) + x \end{bmatrix}_{0}^{\frac{\pi}{6}} = \frac{1}{2} \operatorname{artanh}\left(\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}(-(0)) $ M1: Correct use of limits on either part (provided both parts are integrated). Lower<br>limit need not be shown $= \frac{1}{4} \ln\left(\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}\right) + \frac{\pi}{6} $ Use of the logarithmic form of artanh M1 $= \frac{1}{4} \ln\left(7 + 4\sqrt{3}\right) + \frac{\pi}{6} \text{ or } \frac{1}{2} \ln\left(2 + \sqrt{3}\right) + \frac{\pi}{6} $ Cao (oe) A1 The last 2 M marks may be gained in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b)                | $\int \cos x \operatorname{artanh}(\cos x) dx = \sin x \operatorname{artanh}(\cos x) - \int \sin x \times -\operatorname{cosec} x dx$       |                                       |                           | M1A1    |  |
| M1: Correct use of limits on either part (provided both parts are integrated). Lower<br>limit need not be shown $= \frac{1}{4} \ln \left( \frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}} \right) + \frac{\pi}{6}$ Use of the logarithmic form of artanh $M1$ $= \frac{1}{4} \ln \left( 7 + 4\sqrt{3} \right) + \frac{\pi}{6} \text{ or } \frac{1}{2} \ln \left( 2 + \sqrt{3} \right) + \frac{\pi}{6}$ Cao (oe) $A1$ The last 2 M marks may be gained in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  |                                                                                                                                             |                                       |                           |         |  |
| $= \frac{1}{4} \ln \left( \frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}} \right) + \frac{\pi}{6}$ Use of the logarithmic form of artanh M1<br>$= \frac{1}{4} \ln \left( 7 + 4\sqrt{3} \right) + \frac{\pi}{6} \text{ or } \frac{1}{2} \ln \left( 2 + \sqrt{3} \right) + \frac{\pi}{6}$ Cao (oe) A1<br>The last 2 M marks may be gained in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                                             |                                       |                           | M1      |  |
| $=\frac{1}{4}\ln\left(7+4\sqrt{3}\right)+\frac{\pi}{6}\operatorname{or}\frac{1}{2}\ln\left(2+\sqrt{3}\right)+\frac{\pi}{6}$ Cao (oe) A1<br>The last 2 M marks may be gained in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                  | limit need not be shown                                                                                                                     |                                       |                           |         |  |
| The last 2 M marks may be gained in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | $=\frac{1}{4}\ln\left(\frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}}\right)+\frac{\pi}{6}$                                               | Use of the logarithmic form of artanh |                           | M1      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | $=\frac{1}{4}\ln(7+4\sqrt{3})+\frac{\pi}{6} \text{ or } \frac{1}{2}\ln(2+\sqrt{3})+\frac{\pi}{6}$                                           | Cao (oe)                              |                           | A1      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                             |                                       |                           | (5)     |  |
| Total /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                                                                                                             |                                       |                           | Total 7 |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                                                                                                                                                                          | Marks                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 6(a)               | $\overrightarrow{AB} = \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \ \overrightarrow{AC} = \begin{pmatrix} 1\\-1\\3 \end{pmatrix}, \ \overrightarrow{BC} = \begin{pmatrix} 3\\-2\\2 \end{pmatrix}$                                                                                                                                                                                                                                                                 | Two correct vectors in $\Pi$<br>Can be negatives of those shown                                                                                                                                | B1                     |
|                    | $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1 \\ 1 & -1 & 3 \end{vmatrix} = \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                   | M1: Attempt cross product of two vectors lying in $\Pi$ (At least one no. to be correct.)                                                                                                      | M1A1                   |
|                    | $\begin{vmatrix} 1 & -1 & 3 \end{vmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                   | A1: Correct normal vector                                                                                                                                                                      |                        |
|                    | $\begin{pmatrix} 4\\7\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\2\\3 \end{pmatrix} = 4 + 14 + 3$                                                                                                                                                                                                                                                                                                                                                             | Attempt scalar product with their normal and a point in the plane                                                                                                                              | dM1                    |
|                    | 4x + 7y + z = 21                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cao (oe)                                                                                                                                                                                       | A1                     |
|                    | (a) Altern                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ative                                                                                                                                                                                          |                        |
|                    | a + 2b + 3c = d                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                        |
|                    | -a + 3b + 4c = d                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correct equations                                                                                                                                                                              | B1                     |
|                    | $2a+b+6c = d$ $a = \frac{4}{21}d, \ b = \frac{1}{3}d, \ c = \frac{1}{21}d$                                                                                                                                                                                                                                                                                                                                                                                     | M1: Solve for <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>d</i>                                                                                                                            |                        |
|                    | $a = \frac{1}{21}d, b = \frac{1}{3}d, c = \frac{1}{21}d$                                                                                                                                                                                                                                                                                                                                                                                                       | A1: Correct equations                                                                                                                                                                          | M1A1                   |
|                    | $d = 21 \Longrightarrow a = \dots, \ b = \dots, \ c = \dots$                                                                                                                                                                                                                                                                                                                                                                                                   | Obtains values for <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i>                                                                                                                                 | M1                     |
|                    | 4x + 7y + z = 21                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cao (oe)                                                                                                                                                                                       | A1                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | (5)                    |
|                    | Alternative: Using $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$ where <b>b</b> a                                                                                                                                                                                                                                                                                                                                                                      | nd $\mathbf{c}$ are vectors in $\Pi$                                                                                                                                                           |                        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                        |
|                    | Two correct vectors in the plane                                                                                                                                                                                                                                                                                                                                                                                                                               | See main scheme                                                                                                                                                                                | B1                     |
|                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                | B1<br>M1               |
|                    | $\operatorname{Eg} \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$                                                                                                                                                                                                          |                                                                                                                                                                                                |                        |
|                    | $\operatorname{Eg} \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$                                                                                                                                                                                                                          | See main scheme                                                                                                                                                                                | M1                     |
| <b>(b</b> )        | $Eg \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$ $z = 3 + s + 3t$ $4x + 7y + z = 21$                                                                                                                                                                                     | See main scheme<br>Deduce 3 correct equations<br>M1: Eliminate <i>s</i> , <i>t</i><br>A1: Cao                                                                                                  | M1<br>A1<br>M1A1       |
| ( <b>b</b> )       | $Eg \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$ $z = 3 + s + 3t$                                                                                                                                                                                                        | See main scheme Deduce 3 correct equations M1: Eliminate <i>s</i> , <i>t</i>                                                                                                                   | M1<br>A1               |
| ( <b>b</b> )       | $Eg \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$ $z = 3 + s + 3t$ $4x + 7y + z = 21$ $AD\Box AB \times AC$ $= \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} k - 1 \\ 2 \\ 11 \end{pmatrix} = 4k - 4 + 14 + 11$                                       | See main scheme         Deduce 3 correct equations         M1: Eliminate s, t         A1: Cao         Attempt suitable triple product         M1: Set $\frac{1}{6}$ (their triple product) = 6 | M1<br>A1<br>M1A1       |
| (b)                | $Eg \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$ $z = 3 + s + 3t$ $4x + 7y + z = 21$ $AD\Box AB \times AC$ $= \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} k - 1 \\ 2 \\ 11 \end{pmatrix} = 4k - 4 + 14 + 11$ $\therefore \frac{1}{6}(4k + 21) = 6$ | See main scheme Deduce 3 correct equations M1: Eliminate <i>s</i> , <i>t</i> A1: Cao Attempt suitable triple product                                                                           | M1<br>A1<br>M1A1<br>M1 |
| (b)                | $Eg \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $x = 1 - 2s + t$ $y = 2 + s - t$ $z = 3 + s + 3t$ $4x + 7y + z = 21$ $AD\Box AB \times AC$ $= \begin{pmatrix} 4 \\ 7 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} k - 1 \\ 2 \\ 11 \end{pmatrix} = 4k - 4 + 14 + 11$                                       | See main scheme         Deduce 3 correct equations         M1: Eliminate s, t         A1: Cao         Attempt suitable triple product         M1: Set $\frac{1}{6}$ (their triple product) = 6 | M1<br>A1<br>M1A1<br>M1 |

|  | (b) Al                                                                                                                          | tern | ative                                                 |         |
|--|---------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------|---------|
|  | Area ABC = $\frac{1}{2} \left  \overrightarrow{AB} \right  \left  \overrightarrow{AC} \right  = \frac{1}{2} \sqrt{6} \sqrt{11}$ |      | Attempt area $ABC$ and distance between $D$ and $\Pi$ | M1      |
|  | <i>D</i> to $\Pi$ is $\frac{4k + 28 + 14 - 21}{\sqrt{16 + 49 + 1}}$                                                             | Du   |                                                       |         |
|  | $\frac{1}{6}\sqrt{6}\sqrt{11}\frac{4k+28+14-21}{\sqrt{16+49+1}} = 6$                                                            | M1   | : Set $\frac{1}{3}$ (their area x their distance) = 6 | dM1A1   |
|  |                                                                                                                                 | Al   | : Correct equation                                    |         |
|  | $k = \frac{15}{4}$                                                                                                              | Cae  | o (oe)                                                | A1      |
|  |                                                                                                                                 |      |                                                       | (4)     |
|  |                                                                                                                                 |      |                                                       | Total 9 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                      | Notes                                                                                                                  | Marks           |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| 7                  | $x=3t^4,$                                                                                                                                                                                                                                                   | $x = 3t^4,  y = 4t^3$                                                                                                  |                 |  |  |  |  |
| (a)                | $\frac{\mathrm{d}x}{\mathrm{d}t} = 12t^3,  \frac{\mathrm{d}y}{\mathrm{d}t} = 12t^2$                                                                                                                                                                         | Correct derivatives                                                                                                    | B1              |  |  |  |  |
|                    | $S = (2\pi) \int y \left( \left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 \right)^{\frac{1}{2}} dt$ $\left( = (2\pi) \int 4t^3 \left( 144t^6 + 144t^4 \right)^{\frac{1}{2}} dt \right)$ M1: Substitutes their derivatives into              |                                                                                                                        |                 |  |  |  |  |
|                    | $S = (2\pi) \int 4t^3 (144t^4)^{\frac{1}{2}} (t^2 + 1)^{\frac{1}{2}} dt$                                                                                                                                                                                    | Attempt to factor out at least $t^4$ - numerical factor may be left                                                    | M1              |  |  |  |  |
|                    | $S = 96\pi \int_0^1 t^5 \left(t^2 + 1\right)^{\frac{1}{2}} \mathrm{d}t$                                                                                                                                                                                     | Correct completion                                                                                                     | A1              |  |  |  |  |
|                    |                                                                                                                                                                                                                                                             |                                                                                                                        | (4)             |  |  |  |  |
| (b)                | $u^2 = t^2 + 1 \Longrightarrow 2u \frac{\mathrm{d}u}{\mathrm{d}t} = 2t \text{ or } 2u = 2t \frac{\mathrm{d}t}{\mathrm{d}u}$                                                                                                                                 | Correct differentiation                                                                                                | B1              |  |  |  |  |
|                    | $t = 0 \Longrightarrow u = 1, \ t = 1 \Longrightarrow u = \sqrt{2}$                                                                                                                                                                                         | Correct limits<br>ALT: reverse the substitution later.<br>(Treat as M1 in this case and award<br>later when work seen) | B1              |  |  |  |  |
|                    | $S = (96\pi) \int t^5 \times u \times \frac{u}{t} \mathrm{d}u$                                                                                                                                                                                              |                                                                                                                        |                 |  |  |  |  |
|                    | $S = (96\pi) \int (u^2 - 1)^2 \times u^2 \mathrm{d}u$                                                                                                                                                                                                       | M1: Complete substitution<br>A1: Correct integral in terms of <i>u</i> .<br>Ignore limits, need not be<br>simplified   | M1A1            |  |  |  |  |
|                    | $S = (96\pi) \int (u^6 - 2u^4 + u^2)$                                                                                                                                                                                                                       | $du = (96\pi) \left[ \frac{u^7}{7} - \frac{2u^5}{5} + \frac{u^3}{3} \right]$                                           | dM1             |  |  |  |  |
|                    | M1: Expands and attempts to integrate                                                                                                                                                                                                                       |                                                                                                                        |                 |  |  |  |  |
|                    | $S = 96\pi \left[ \frac{u^7}{7} - \frac{2u^5}{5} + \frac{u^3}{3} \right]_1^{\sqrt{2}} = 96\pi \left\{ \left( \frac{\sqrt{2}^7}{7} - \frac{2\sqrt{2}^5}{5} + \frac{\sqrt{2}^3}{3} \right) - \left( \frac{1}{7} - \frac{2}{5} + \frac{1}{3} \right) \right\}$ |                                                                                                                        | ddM1            |  |  |  |  |
|                    | M1: Correct use of their changed limits (both to be changed)<br>ALT: If sub reversed, substitute the original limits                                                                                                                                        |                                                                                                                        |                 |  |  |  |  |
|                    | $S = \frac{192\pi}{105} \left( 11\sqrt{2} - 4 \right)$                                                                                                                                                                                                      | Cao eg $\frac{64\pi}{35}$                                                                                              | A1              |  |  |  |  |
|                    |                                                                                                                                                                                                                                                             |                                                                                                                        | (7)<br>Total 11 |  |  |  |  |
|                    |                                                                                                                                                                                                                                                             |                                                                                                                        |                 |  |  |  |  |

PMT

| Question<br>Number | Scheme                                                                                        |                 | Notes                                                                                    | Marks |  |  |
|--------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------|-------|--|--|
| 8.                 | $I_n = \int_0^{\ln 2} \tanh^{2n} x  \mathrm{d}x,  n \ge 0$                                    |                 |                                                                                          |       |  |  |
| (a)                | $\tanh^{2n} x = \tanh^{2(n-1)} x \tanh^2 x$                                                   |                 |                                                                                          | B1    |  |  |
|                    | $\tanh^{2n} x = \pm \tanh^{2(n-1)} x \left(1 - \operatorname{sech}^2 x\right)$                |                 |                                                                                          | M1    |  |  |
|                    | $I_n = \int_0^{\ln 2} \tanh^{2(n-1)} x  \mathrm{d} x$                                         | $x-\int_0^1$    | $\tanh^{2(n-1)} x \operatorname{sech}^2 x  \mathrm{d}x$                                  |       |  |  |
|                    |                                                                                               | M1:             | Correctly substitutes for <i>I</i> <sub>n-1</sub> and obtains                            |       |  |  |
|                    | $I_n = I_{n-1} - \left[\frac{1}{2n-1} \tanh^{2n-1} x\right]_0^{\ln 2}$                        | ∫ t             | $\operatorname{anh}^{2(n-1)} x \operatorname{sech}^2 x  \mathrm{d}x = k \tanh^{2n-1} x$  | M1A1  |  |  |
|                    |                                                                                               | A1:             | Correct expression                                                                       |       |  |  |
|                    | $=I_{n-1} - \frac{1}{2n-1} \left(\frac{3}{5}\right)^{2n-1} *$                                 | Corr            | ect completion with no errors                                                            | A1*   |  |  |
|                    |                                                                                               |                 |                                                                                          | (5    |  |  |
| ALT:               | $I_n - I_{n-1} = \int_0^{\ln 2} \left( \tanh^{2n} x - \tanh^{2(n-1)} x \right) dx$            | 1x              |                                                                                          |       |  |  |
|                    | $= \int_{0}^{\ln 2} \tanh^{2(n-1)} x (\tanh^2 x - 1)  \mathrm{d}x$                            |                 |                                                                                          | B1    |  |  |
|                    | $= \int_{0}^{\ln 2} \tanh^{2(n-1)} x \left(-\operatorname{sech}^{2} x\right) dx$              | $=\int_{0}^{1}$ | $\tanh^{2(n-1)} x \left(\pm \operatorname{sech}^2 x\right) \mathrm{d}x$                  | M1    |  |  |
|                    |                                                                                               | M1:             | Obtains                                                                                  |       |  |  |
|                    | $I_n - I_{n-1} = -\left[\frac{1}{2n-1} \tanh^{2n-1} x\right]_0^{\ln 2}$                       | ∫ t             | $\operatorname{anh}^{2(n-1)} x \operatorname{sech}^2 x  \mathrm{d}x = k  \tanh^{2n-1} x$ | M1A1  |  |  |
|                    |                                                                                               | A1:             | Correct expression                                                                       |       |  |  |
|                    | $= I_{n-1} - \frac{1}{2n-1} \left(\frac{3}{5}\right)^{2n-1} *$                                | Corr            | rect completion with no errors                                                           | A1*   |  |  |
|                    | <u> </u>                                                                                      |                 |                                                                                          |       |  |  |
| (b)                | $I_0 = \ln 2$                                                                                 | The             | integration must be seen.                                                                | B1    |  |  |
|                    | $I_2 = I_1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$                                          | App             | lies the reduction formula once                                                          | M1    |  |  |
|                    | $I_2 = I_0 - \frac{1}{1} \left(\frac{3}{5}\right)^1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$ | form            |                                                                                          | M1A1  |  |  |
|                    |                                                                                               | A1:             | Correct expression                                                                       |       |  |  |
|                    | $I_2 = \ln 2 - \frac{84}{125}$                                                                | cao             |                                                                                          | A1    |  |  |
|                    | Special Case:                                                                                 |                 |                                                                                          |       |  |  |
|                    | If $I_4$ is found award B1 for $I_0$ or $I_1$ and N                                           | /1M0            | A0A0                                                                                     |       |  |  |
|                    |                                                                                               |                 |                                                                                          |       |  |  |
|                    |                                                                                               |                 |                                                                                          |       |  |  |

| (b) Alternative                                                                                  |                                    |          |
|--------------------------------------------------------------------------------------------------|------------------------------------|----------|
| $I_{1} = \int_{0}^{\ln 2} \tanh^{2} x  dx = \int_{0}^{\ln 2} (1 - \operatorname{sech}^{2} x) dx$ |                                    |          |
| $I_1 = [x - \tanh x]_0^{\ln 2}$                                                                  | Correct integration                | B1       |
| $I_2 = I_1 - \frac{1}{3} \left(\frac{3}{5}\right)^3$                                             | Applies the reduction formula once | M1       |
| $I_1 = \ln 2 - \tanh(\ln 2) = \ln 2 - \frac{3}{5}$                                               | M1: Uses limits                    | — M1A1   |
|                                                                                                  | A1: Correct expression             |          |
| $I_2 = \ln 2 - \frac{3}{5} - \frac{1}{3} \left(\frac{3}{5}\right)^3$                             |                                    |          |
| $=\ln 2 - \frac{84}{125}$                                                                        |                                    | A1       |
| <br>                                                                                             |                                    | (5)      |
|                                                                                                  |                                    | Total 10 |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R  $\mbox{ORL}$