

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Further Pure Mathematics F3 (WFM03/01)

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2014 Publications Code IA038891 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# EDEXCEL IAL MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

PMT

PMT

# **General Principles for Further Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

## 1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = ...$ 

# 2. Formula

Attempt to use the correct formula (with values for a, b and c).

### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

# Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

# 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

#### Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required..

| Question<br>Number | S                                                                                                                           | Marks                                                                                                                                                                                                                                     |         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.(a)              | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \left(\frac{2}{3}\right) \frac{1}{1 + \frac{4x^2}{9}} = \frac{6}{9 + 4x^2}$ | M1: Use formula for derivative of<br>arctan: $\left(\frac{dy}{dx} =\right) \frac{p}{1+(qx)^2}, q \neq 1$<br>Condone missing brackets around $qx$<br>but must be $1+(qx)^2$ not $1-(qx)^2$ and<br>p may be 1<br>A1: Answer <b>as shown</b> | M1A1    |
|                    | Allow corr                                                                                                                  | rect answer only                                                                                                                                                                                                                          |         |
| +                  |                                                                                                                             |                                                                                                                                                                                                                                           | (2)     |
|                    |                                                                                                                             | ternative                                                                                                                                                                                                                                 |         |
|                    | $y = \arctan\left(\frac{2x}{3}\right) \Longrightarrow ta$                                                                   | $\ln y = \frac{2x}{3} \Longrightarrow \sec^2 y \frac{dy}{dx} = \frac{2}{3}$ $\frac{2}{3(1 + \tan^2 y)}$                                                                                                                                   |         |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{3\mathrm{sec}^2}$                                                               |                                                                                                                                                                                                                                           |         |
|                    | $=\frac{2}{3\left(1+\left(\frac{2}{3}x\right)^2\right)}$                                                                    | $\left(\frac{dy}{dx}\right) = \frac{p}{1+(qx)^2}, q \neq 1$<br>Condone missing brackets around $qx$ but must be $1+(qx)^2$ not $1-(qx)^2$ and $p$ may be 1                                                                                | M1      |
|                    | $=\frac{6}{9+4x^2}$                                                                                                         | Answer as shown                                                                                                                                                                                                                           | A1      |
| (b)                | $\therefore \int \arctan\left(\frac{2x}{3}\right) dx = \begin{bmatrix} x \\ x \end{bmatrix}$                                | $x \arctan\left(\frac{2x}{3}\right) - \int \frac{6x}{9+4x^2} dx$                                                                                                                                                                          | M1A1ft  |
| Í Í                | M1: Use of par                                                                                                              | ts in correct direction                                                                                                                                                                                                                   |         |
|                    | Allow e.g. $x \arctan\left(\frac{2x}{3}\right)$                                                                             | $-\int x d\left(\arctan\left(\frac{2x}{3}\right)\right)$ for M1                                                                                                                                                                           |         |
|                    | A1ft: Follow through                                                                                                        |                                                                                                                                                                                                                                           |         |
|                    | $= \left[x \arctan\left(\frac{2x}{3}\right)\right]$                                                                         | M1A1                                                                                                                                                                                                                                      |         |
| [                  |                                                                                                                             | rrectly for their fraction                                                                                                                                                                                                                |         |
|                    |                                                                                                                             | + c not required)<br>$) \times x \text{ and } -\frac{3}{4} \ln k(9 + 4x^2)$                                                                                                                                                               |         |
| ŀ                  |                                                                                                                             | · · ·                                                                                                                                                                                                                                     | (4)     |
|                    |                                                                                                                             |                                                                                                                                                                                                                                           | Total 6 |

| Question<br>Number | Scheme                                                                                                                |                                                                                                                                                                                                                                                                                | Marks   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2.                 | $\pm \frac{a}{e} = \pm 9$ and $a^2(1-e^2) = 8$                                                                        | Both equations correct                                                                                                                                                                                                                                                         | B1      |
|                    | $a^4 - 81a^2 + 648 = 0$ or<br>$81e^4 - 81e^2 + 8 = 0$                                                                 | M1: Eliminates an unknown to<br>produce a quadratic in $a^2$ or $e^2$<br>A1: Correct three term quadratic<br>in any form with terms collected                                                                                                                                  | M1A1    |
|                    | $(a^2 - 72)(a^2 - 9) = 0 \Longrightarrow a^2 = \dots$<br>or<br>$(9e^2 - 8)(9e^2 - 1) = 0 \Longrightarrow e^2 = \dots$ | Uses a standard method (see<br>notes) to solve quadratic as far as<br>$a^2 =$ or $e^2 =$ (Must be<br>$a^2 =$ or $e^2 =$ at this stage not<br>a = or $e =$ but this may be<br>implied by later work)<br>May be implied by correct<br>answers only.                              | M1      |
|                    | $a = 3$ and $a = 6\sqrt{2}$                                                                                           | M1: Complete method to find <i>a</i> .<br>Either square roots from $a^2 =$<br>or square roots from $e^2 =$ and<br>uses $a = 9e$ at least once<br>A1: cao (both answers correct). Do<br>not accept $\pm$ for either of the<br>answers unless the negative is<br>rejected later. | M1A1    |
|                    |                                                                                                                       |                                                                                                                                                                                                                                                                                | (6)     |
|                    |                                                                                                                       |                                                                                                                                                                                                                                                                                | Total 6 |

| Question<br>Number | Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks                                                                                                                                        |                |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| <b>3.</b> (a)      | $\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}-\left\{\frac{1}{2}(e^{x}-e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}-e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{\frac{1}{2}(e^{x}+e^{-x})\right\}^{2}=\left\{$ | M1                                                                                                                                           |                |  |
|                    | M1: Uses the correct exponential forms for cosh and sinh and squares both brackets obtaining 3 terms each time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                |  |
|                    | obtaining 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |                |  |
|                    | $\frac{1}{2} + \frac{1}{2} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At least one line of intermediate<br>working (e.g. combines fractions with a<br>common denominator) with no errors seen<br>and concludes = 1 | A1             |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | (2)            |  |
| (b)                | $(e^{x} - e^{-x}) + 7 \times \frac{1}{2}(e^{x} + e^{-x}) = 9$ $\implies \frac{9}{2}e^{x} + \frac{5}{2}e^{-x} - 9 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1: Uses exponential forms <b>and</b><br>collects terms<br>A1: Any correct form with terms                                                   | - M1A1         |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | collected<br>Solves their three term quadratic in $e^x$ as                                                                                   |                |  |
|                    | $\Rightarrow 9e^{2x} - 18e^x + 5 = 0$ so $e^x = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for as $e^x =$                                                                                                                               | M1             |  |
|                    | $e^x = \frac{1}{3}$ or $\frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Both values correct                                                                                                                          | A1             |  |
|                    | $x = \ln \frac{1}{3} \text{ and } \ln \frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Both values correct (accept equivalents)                                                                                                     | A1             |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | (5)<br>Total 7 |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              |                |  |
| Way 2              | Alternatives for $2 \sinh x = 9 - 7 \cosh x \Rightarrow 43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1A1                                                                                                                                         |                |  |
| Way 2              | $2 \operatorname{smin} x = 9 - 7 \operatorname{cosm} x \Longrightarrow 4.$<br>M1: Attempt to square both sid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIAI                                                                                                                                         |                |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= 0 \Rightarrow \cosh x = \frac{17}{15} \text{ or } \cosh x = \frac{5}{3}$                                                                  |                |  |
|                    | . , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= 0, \frac{e^{x} + e^{-x}}{2} = \frac{5}{3} \Longrightarrow 3e^{2x} - 10e^{x} + 3 = 0$                                                      |                |  |
|                    | $\frac{1}{(5e^{x}-3)(3e^{x}-5)=0} \Rightarrow e^{x} = \frac{3}{5}, e^{x} = \frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1: Solves at least one of their three                                                                                                       |                |  |
|                    | $(3e^{x}-1)(e^{x}-3) = 0 \implies e^{x} = \frac{1}{3}, e^{x} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | having used the correct exponential form<br>for coshx                                                                                        | M1A1           |  |
|                    | $e^x = \frac{5}{3}$ and $e^x = \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1: $e^x = \frac{5}{3}$ and $e^x = \frac{1}{3}$ seen                                                                                         |                |  |
|                    | $x = \ln \frac{1}{3}$ and $\ln \frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | These values only with $\ln 3$ and $\ln \frac{3}{5}$ rejected                                                                                | A1             |  |
| Way 3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $45\sinh^2 x + 36\sinh x - 32 = 0$                                                                                                           |                |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | les A1: Correct quadratic in sinhx                                                                                                           | M1A1           |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= 0 \Rightarrow \sinh x = \frac{8}{15}$ or $\sinh x = -\frac{4}{3}$                                                                         |                |  |
|                    | $\frac{e^{x} - e^{-x}}{2} = \frac{8}{15} \Longrightarrow 15e^{2x} - 16e^{x} - 15 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0, \frac{e^{x} - e^{-x}}{2} = -\frac{4}{3} \Longrightarrow 3e^{2x} + 8e^{x} - 3 = 0$                                                        |                |  |
|                    | $(3e^{x} - 5)(5e^{x} + 3) = 0 \Longrightarrow e^{x} = \frac{5}{3}, e^{x} = -\frac{5}{3}$ $(3e^{x} - 1)(e^{x} + 3) = 0 \Longrightarrow e^{x} = \frac{1}{3}, e^{x} = -\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1                                                                                                                          | M1A1           |  |
|                    | $(3e^{-1})(e^{-1}+3)=0 \implies e^{-1}=\frac{1}{3}, e^{-1}=\frac{1}{3}$<br>$e^{x}=\frac{5}{3} \text{ and } e^{x}=\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1: $e^x = \frac{5}{3}$ and $e^x = \frac{1}{3}$ seen                                                                                         | 111/11         |  |
|                    | $x = \ln \frac{1}{3}$ and $\ln \frac{5}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | A 1            |  |
|                    | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | These values only                                                                                                                            | A1             |  |
|                    | Note: For these special cases, if they<br>from their cosh = or sinh = the<br>as they are not using exponentials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                |  |

| Question<br>Number | Sch                                                                                                                                                                                                                                                                | eme                                                                                                                                                                                                                                                                                                             | Marks   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <b>4.</b> (a)      | $\det \mathbf{M} = 6 - k^2$                                                                                                                                                                                                                                        | A correct (possibly un-simplified)<br>determinant                                                                                                                                                                                                                                                               | B1      |
|                    | $\mathbf{M}^{T} = \begin{pmatrix} 3 & k & k \\ k & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ or min<br>cofactors $\begin{pmatrix} 2 \\ -k \\ 0 \end{pmatrix}$                                                                                                             | B1                                                                                                                                                                                                                                                                                                              |         |
|                    | $\frac{1}{6-k^2} \begin{pmatrix} 2 & -k & 0\\ -k & 3 & 0\\ -2k & k^2 & 6-k^2 \end{pmatrix}$                                                                                                                                                                        | M1: Identifiable full attempt at<br>inverse <b>including reciprocal of</b><br><b>determinant</b> . Could be indicated<br>by at least 6 correct elements.<br>A1: Two rows or two columns<br>correct (ignoring determinant)<br><b>BUT M0A1A0 or M0A1A1 is</b><br><b>not possible</b><br>A1: Fully correct inverse | M1A1A1  |
|                    |                                                                                                                                                                                                                                                                    | (5)                                                                                                                                                                                                                                                                                                             |         |
| (b)                | $ \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 0 \\ -2 & 1 & 5 \end{pmatrix} \begin{pmatrix} -5 \\ 10 \\ 7 \end{pmatrix} $ $ \Rightarrow a = \dots \text{ or } b = \dots \text{ or } c = \dots $                 | M1                                                                                                                                                                                                                                                                                                              |         |
|                    | x = -4, y = 7, z = 11                                                                                                                                                                                                                                              | M1: Obtains values for all three coordinates                                                                                                                                                                                                                                                                    | M1A1cao |
|                    |                                                                                                                                                                                                                                                                    | A1: Correct coordinates                                                                                                                                                                                                                                                                                         | (3)     |
|                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 | Total 8 |
|                    | Alternati                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                 |         |
|                    | $ \begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \\ 7 \end{pmatrix} \Rightarrow a + 2b = \\ a + c = \\ \Rightarrow a = \dots \text{ or } b = \dots \text{ or } c = \dots $ | <ul> <li>Multiplies to give 3 equations</li> <li>and attempts to obtain a</li> <li>numerical value for at least</li> <li>one of <i>a</i>, <i>b</i> or <i>c</i></li> </ul>                                                                                                                                       | M1      |
|                    | x = -4, y = 7, z = 11                                                                                                                                                                                                                                              | M1: Obtains values for all<br>three coordinates<br>A1: Correct coordinates                                                                                                                                                                                                                                      | M1A1cao |

| Question   | S                                                                                                                                                                                                                          | Scheme                                      |                                                                                                                                                                                                                           | Marks              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 5(a)       | $I_n = \left[\cos^{n-1}\theta\sin\theta\right]_0^{\frac{\pi}{4}} - (-)\int_0^{\frac{\pi}{4}} (n-1)\cos^{n-2}\theta\sin^2\theta d\theta$                                                                                    |                                             | M1A1                                                                                                                                                                                                                      |                    |
|            | M1: Attempt parts the correct way round A1: Correct expression                                                                                                                                                             |                                             |                                                                                                                                                                                                                           |                    |
|            | so $I_n = \left(\frac{1}{\sqrt{2}}\right)^n +$                                                                                                                                                                             | Uses                                        | s limits to obtain $\left(\frac{1}{\sqrt{2}}\right)^n$                                                                                                                                                                    | B1                 |
|            | i.e. $I_n = \dots + \int_0^{\frac{\pi}{4}} (n) dn = \dots$                                                                                                                                                                 | $(n-1)\cos^{n-1}$                           | $e^{-2}\theta(1-\cos^2\theta)\mathrm{d}\theta$                                                                                                                                                                            | <b>d</b> M1        |
|            | M1: Replaces                                                                                                                                                                                                               | $\sin^2 \theta$ by                          | $1 - \cos^2 \theta$                                                                                                                                                                                                       |                    |
|            | Dependent on the                                                                                                                                                                                                           | previous                                    | s method mark                                                                                                                                                                                                             |                    |
|            | So $I_n = \left(\frac{1}{\sqrt{2}}\right)^n + (n-1)I_{n-2} - (n-1)I_{n-2}$                                                                                                                                                 | $-1)I_n$ , and                              | d $nI_n = \left(\frac{1}{\sqrt{2}}\right)^n + (n-1)I_{n-2} *$                                                                                                                                                             | ddM1A1cso          |
|            | M1: Replaces ex                                                                                                                                                                                                            | ▲                                           |                                                                                                                                                                                                                           |                    |
|            | <b>Dependent on both</b><br>A1: Achieves printed                                                                                                                                                                           | -                                           |                                                                                                                                                                                                                           |                    |
|            | AI. Achieves printed                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                           | (6)                |
|            | Alt                                                                                                                                                                                                                        | ternative                                   |                                                                                                                                                                                                                           |                    |
|            | $I_n = \int_0^{\frac{\pi}{4}} \cos^{n-2}\theta \cos^2\theta dt$                                                                                                                                                            |                                             | $\cos^{n-2}\theta(1-\sin^2\theta)\mathrm{d}\theta$                                                                                                                                                                        | 2 <sup>nd</sup> M1 |
|            | Writes $\cos^n \theta$ as $\cos^{n-2} \theta \cos^{n-2} \theta$                                                                                                                                                            | $^{2}\theta$ and rep                        | places $\cos^2 \theta$ by 1 - $\sin^2 \theta$                                                                                                                                                                             |                    |
|            | $I_n = I_{n-2} + \left[\frac{1}{n-1}\cos^{n-1}\theta\sin\theta\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}}\frac{1}{(n-1)}\cos^n\thetad\theta$<br>dM1: Attempt parts the correct way round A1: Correct expression     |                                             |                                                                                                                                                                                                                           | dM1A1              |
|            |                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                           |                    |
|            | $I_n = I_{n-2} + \frac{1}{n-1} \left(\frac{1}{\sqrt{2}}\right)^n - \frac{1}{n-1} I_n \qquad \qquad$ |                                             | is limits to obtain $\frac{1}{n-1} \left(\frac{1}{\sqrt{2}}\right)^n$                                                                                                                                                     | B1 <b>dd</b> M1    |
|            | $n = n - 1(\sqrt{2})  n - 1$                                                                                                                                                                                               | <b>dd</b> M1: and $I_{n-1}$                 | Replaces expressions for $I_n$                                                                                                                                                                                            |                    |
|            | $nI_n = \left(\frac{1}{\sqrt{2}}\right)^n + (n-1)I_{n-2}$                                                                                                                                                                  | Achieves printed answer with no errors seen |                                                                                                                                                                                                                           | A1                 |
| <b>(b)</b> | π                                                                                                                                                                                                                          |                                             | M1: Attempt $I_1$                                                                                                                                                                                                         |                    |
|            | $I_1 = \int_0^{\frac{\pi}{4}} \cos\theta \mathrm{d}\theta = [\sin\theta]_0^{\frac{\pi}{4}} =$                                                                                                                              | $\frac{1}{\sqrt{2}}$                        | A1: $\frac{1}{\sqrt{2}}$                                                                                                                                                                                                  | M1A1               |
|            | $I_{3} = \frac{1}{3} \left( \frac{1}{2\sqrt{2}} + 2I_{1} \right),  I_{5} = \frac{1}{5} \left( \frac{1}{4\sqrt{2}} \right)$<br>or<br>$3I_{3} = \frac{1}{2\sqrt{2}} + 2I_{1},  5I_{5} = \frac{1}{4\sqrt{2}}$                 |                                             | M1: Uses reduction formula<br>first time (allow slips<br>providing the reduction<br>formula is being used)<br>M1: Uses reduction formula<br>second time (allow slips<br>providing the reduction<br>formula is being used) | - M1M1             |
|            | $I_5 = \frac{43\sqrt{2}}{120}$ or $\frac{43}{60\sqrt{2}}$                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           | A1                 |
|            |                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                           | (5)                |
|            |                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                           | Total 11           |

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks    |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 6(a)     | $\frac{dx}{d\theta} = 4 \sinh \alpha$ and $\frac{dy}{d\theta} = 2 \cosh \alpha$ so $\frac{dy}{dx} = \frac{2 \cosh \alpha}{4 \sinh \alpha}$                                                                                                                                                                                                                                                                                      |          |  |
| P        | M1: Differentiates x and y and divides correctly<br>A1: Correct derivative in terms of $\alpha$                                                                                                                                                                                                                                                                                                                                 |          |  |
|          | <b>OR</b> $\frac{2x}{16} - \frac{2yy'}{4} = 0 \Rightarrow y' = \frac{x}{4y} = \frac{4\cosh\alpha}{8\sinh\alpha}$                                                                                                                                                                                                                                                                                                                |          |  |
|          | M1: Differentiates implicitly to obtain $px - qyy' = 0$ and makes y' the subject                                                                                                                                                                                                                                                                                                                                                | M1A1     |  |
|          | A1: Correct derivative in terms of $\alpha$                                                                                                                                                                                                                                                                                                                                                                                     |          |  |
|          | <b>OR</b> $y = \frac{\sqrt{x^2 - 16}}{2} \Rightarrow y' = \frac{x}{2\sqrt{x^2 - 16}} = \frac{4\cosh\alpha}{2\sqrt{16\cosh^2\alpha - 16}} \left(=\frac{4\cosh\alpha}{8\sinh\alpha}\right)$                                                                                                                                                                                                                                       |          |  |
|          | M1: Differentiates explicitly to obtain $y' = \frac{kx}{\sqrt{x^2 - 16}}$                                                                                                                                                                                                                                                                                                                                                       |          |  |
|          | A1: Correct derivative in terms of $\alpha$                                                                                                                                                                                                                                                                                                                                                                                     |          |  |
|          | Equation of tangent is $(y - 2\sinh\alpha) = \frac{\cosh\alpha}{2\sinh\alpha}(x - 4\cosh\alpha)$ (I)                                                                                                                                                                                                                                                                                                                            | M1       |  |
|          | Correct straight line method using their gradient in terms of $\alpha$                                                                                                                                                                                                                                                                                                                                                          |          |  |
|          | $2y\sinh\alpha - 4\sinh^2\alpha = x\cosh\alpha - 4\cosh^2\alpha \text{ (II)}$                                                                                                                                                                                                                                                                                                                                                   |          |  |
|          | $2y \sinh \alpha + 4(\cosh^2 \alpha - \sinh^2 \alpha) - x \cosh \alpha = 0 \Longrightarrow 2y \sinh \alpha - x \cosh \alpha + 4 = 0$                                                                                                                                                                                                                                                                                            | )* A1*   |  |
|          | See use of $\cosh^2 \alpha - \sinh^2 \alpha = 1$ to give printed answer – there must be some working to establish the printed answer: (I) to * is A0, (II) to * is A1                                                                                                                                                                                                                                                           |          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4)      |  |
| (b)      | Puts $x = 0$ to give A is $\left(0, \frac{-2}{\sinh \alpha}\right)$<br>Al: Uses $x = 0$ in the given equation find y<br>Al: $y = \frac{-2}{\sinh \alpha}$ or $y = \frac{-4}{2\sinh \alpha}$                                                                                                                                                                                                                                     | M1A1     |  |
|          | $\sin \alpha$ $\sin \alpha$ $\sin \alpha$ $\sin \alpha$ $\sin \alpha$                                                                                                                                                                                                                                                                                                                                                           |          |  |
| (c)      | $b^{2} = a^{2} (e^{2} - 1) \Longrightarrow a^{2} e^{2} = 20$ Uses the <b>correct</b> eccentricity formula to<br>obtain a value for $a^{2} e^{2}$ or $ae$<br>Or finds a value for $e$ and multiplies by $a$ .<br>Or finds a value for $e^{2}$ and multiplies by $a$ .                                                                                                                                                            |          |  |
|          | $ae = \sqrt{20}$ or $2\sqrt{5}$ Correct value for $ae$<br>Allow correct answer only                                                                                                                                                                                                                                                                                                                                             | A1       |  |
|          | Gradient $AS = \frac{\frac{2}{\sinh \alpha}}{2\sqrt{5}}$ or Gradient $BS = -\frac{10\sinh \alpha}{2\sqrt{5}}$                                                                                                                                                                                                                                                                                                                   |          |  |
|          | Or $\overrightarrow{AS} = \begin{pmatrix} 2\sqrt{5} \\ \frac{2}{\frac{\sinh \alpha}{2\sqrt{5}}} \end{pmatrix}$ or $\overrightarrow{BS} = \begin{pmatrix} 2\sqrt{5} \\ -10\sinh \alpha \end{pmatrix}$                                                                                                                                                                                                                            | B1       |  |
|          | At least one correct gradient or vector (allow as "coordinates") in terms of $\sinh \alpha$ (allow if also in terms of <i>a</i> and or <i>e</i> )                                                                                                                                                                                                                                                                               |          |  |
|          | E.g Gradient $AS = \frac{\frac{2}{\sinh \alpha}}{\frac{ae \text{ or } 4e \text{ or } a\frac{\sqrt{5}}{2}}}$ or Gradient $BS = -\frac{10 \sinh \alpha}{ae \text{ or } 4e \text{ or } a\frac{\sqrt{5}}{2}}$                                                                                                                                                                                                                       |          |  |
|          | $\frac{2}{\frac{\sinh \alpha}{2\sqrt{5}}} \times -\frac{10\sinh \alpha}{2\sqrt{5}} = -1$ so AS and BS are perpendicular $\frac{2}{\sqrt{5}} \times -\frac{10\sinh \alpha}{2\sqrt{5}} = -1$ M1: Multiplies their AS and BS gradients of uses scalar product e.g. $\overline{SB}.\overline{SA}$ in terms of $\sinh \alpha$ only and must be seen explicitly. A1: Product = -1 or scalar product = 0 with no errors and conclusion | M1A1     |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total 11 |  |

| Question<br>Number | Scheme                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                | Marks           |
|--------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 7.(a)              | $\frac{\mathrm{d}x}{\mathrm{d}t} = 6t, \ \frac{\mathrm{d}y}{\mathrm{d}t} = 12$                    | Both                                                                                                                                                                                                      | derivatives correct                                                                                                                                                                            | B1              |
|                    | $S = (2\pi) \int 12t \sqrt{(6t)^2 + 12^2} dt$                                                     | form<br>need                                                                                                                                                                                              | Use of a correct surface area<br>ula with their derivatives $(2\pi \text{ not}   \mathbf{ed for this mark})$<br>Correct expression <b>including</b> $2\pi$<br>th may be implied by later work) | M1A1            |
|                    | $= \frac{2\pi}{9} [(36t^2 + 144)^{\frac{3}{2}}]$                                                  | Reco<br>integ                                                                                                                                                                                             | Signification end end end end end end end end end en                                                                                                                                           | dM1             |
|                    | $= \frac{2\pi}{9} \left\{ 720^{\frac{3}{2}} - 144^{\frac{3}{2}} \right\}$                         | subt<br><b>Dep</b>                                                                                                                                                                                        | s the limits 0 and 4 and<br>racts.<br><b>endent on the first M.</b>                                                                                                                            | dM1             |
|                    | $= \pi (1920\sqrt{5} - 384)$                                                                      |                                                                                                                                                                                                           | (Allow equivalent fractions 920 and or 384)                                                                                                                                                    | A1              |
|                    |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                | (6)             |
| (b)                | $L = \int_{0}^{4} \sqrt{(6t)^{2} + 12^{2}} dt = 6 \int_{0}^{4} \sqrt{t^{2} + 4} dt$               | t L<br>f                                                                                                                                                                                                  | Use of a correct arc length ormula and obtains $k = 6$                                                                                                                                         | B1              |
| (c)                | $t = 2\sinh\theta \Longrightarrow \frac{\mathrm{d}t}{\mathrm{d}\theta} = 2\cosh\theta$            | C                                                                                                                                                                                                         | Correct derivative                                                                                                                                                                             | B1              |
|                    | $L = 6 \int \sqrt{4 \sinh^2 \theta + 4} \times 2 \cosh \theta  \mathrm{d}\theta$                  | C                                                                                                                                                                                                         | Complete substitution                                                                                                                                                                          | M1              |
|                    | $= 24 \int \cosh^2 \theta  d\theta = 12 \int (\cosh 2\theta + 1)  d\theta$                        | θ                                                                                                                                                                                                         | Uses $\cosh^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2\theta$                                                                                                                          | M1              |
|                    | $6\sinh 2\theta + 12\theta$                                                                       | 0                                                                                                                                                                                                         | Correct integration                                                                                                                                                                            | A1              |
|                    | $L = 6\sinh 2(\operatorname{arsinh}2) + 12\operatorname{arsinh}2(-0)$                             |                                                                                                                                                                                                           | Use limits arsinh 2 (and 0)                                                                                                                                                                    | M1              |
|                    | $= 24\sqrt{5} + 12\ln(2+\sqrt{5})^*$                                                              | (                                                                                                                                                                                                         | Correct solution with no errors                                                                                                                                                                | A1*             |
|                    |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                | (7)<br>Total 13 |
|                    | Alternative - integration usin                                                                    | 10(4) 13                                                                                                                                                                                                  |                                                                                                                                                                                                |                 |
|                    |                                                                                                   | ternative - integration using exponentials (last 4 marks)<br>$24 \int \cosh^2 \theta  d\theta = 12 \int (\frac{e^{\theta} + e^{-\theta}}{2})^2 d\theta = 6 \int (e^{2\theta} + e^{-2\theta} + 2) d\theta$ |                                                                                                                                                                                                | M1              |
|                    | Substitutes the correct exponential form of $\cosh\theta$ and squares                             |                                                                                                                                                                                                           |                                                                                                                                                                                                |                 |
|                    | $3e^{2\theta}-3e^{-2\theta}+12\theta$                                                             | Correct integration                                                                                                                                                                                       | A1                                                                                                                                                                                             |                 |
|                    | $L = 3e^{2\operatorname{arsinh} 2} - 3e^{-2\operatorname{arsinh} 2} + 12\operatorname{arsinh} 2($ | n2(-0) Use limits arsinh 2 (and 0)                                                                                                                                                                        |                                                                                                                                                                                                | M1              |
|                    | $= 24\sqrt{5} + 12\ln(2+\sqrt{5})^*$                                                              | ,                                                                                                                                                                                                         | Correct solution with no errors                                                                                                                                                                | A1*             |

| Question<br>Number | Sch                                                                                                                                                                               | Marks                                                                                                              |          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|
| <b>8</b> (a)       | $((2+3\lambda)\mathbf{i}+(1+2\lambda)\mathbf{j}+(4\lambda)\mathbf{j})\mathbf{j}$                                                                                                  |                                                                                                                    |          |
|                    |                                                                                                                                                                                   | $\lambda - 2\lambda = 19 \Longrightarrow \lambda = \dots$                                                          | M1       |
|                    | Correct dot product                                                                                                                                                               | leading to value for $\lambda$                                                                                     |          |
|                    | $\lambda = 4$                                                                                                                                                                     | Correct $\lambda$                                                                                                  | A1       |
|                    | (2+3×"4",1+2×"4",-2+"4")                                                                                                                                                          | Substitutes their $\lambda$ to give coordinates                                                                    | M1       |
|                    | (14, 9, 2)                                                                                                                                                                        | Correct coordinates (allow as vector)                                                                              | Al       |
|                    |                                                                                                                                                                                   |                                                                                                                    | (4)      |
| <b>(b)</b>         | $\overrightarrow{AB} = 2\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} = 2(\mathbf{i} + \mathbf{j} - 2\mathbf{k})$                                                                        | $(2\mathbf{k})$ so is perpendicular to plane                                                                       | M1       |
|                    | Correct $\overrightarrow{AB}$ a                                                                                                                                                   | and conclusion                                                                                                     |          |
|                    | Also <i>B</i> lies on the plane as                                                                                                                                                | (4i+3j-6k).(i+j-2k) = 19                                                                                           | M1       |
|                    | Substitutes B into the plan                                                                                                                                                       | ne equation and conclusion                                                                                         |          |
|                    | So coordinates of <i>B</i> are $(4, 3, -6)^*$                                                                                                                                     | Both M's scored with final conclusion                                                                              | A1*      |
|                    |                                                                                                                                                                                   |                                                                                                                    | (3       |
|                    |                                                                                                                                                                                   | native                                                                                                             |          |
|                    | $((2+\lambda)\mathbf{i}+(1+\lambda)\mathbf{j}+(-2)\mathbf{i})\mathbf{j}+(-2)\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}\mathbf{j}$ | M1                                                                                                                 |          |
|                    | $\Rightarrow 2+1+4+\lambda+\lambda$                                                                                                                                               | 1011                                                                                                               |          |
|                    | Correct dot product lea                                                                                                                                                           |                                                                                                                    |          |
|                    | (2+"2",1+"2",-2-2×"2")                                                                                                                                                            | Substitutes their $\lambda$ to give coordinates                                                                    | M1       |
|                    | So coordinates of $P_{\text{ore}}(A, 2, 6)$ *                                                                                                                                     | Both M's scored with final                                                                                         | A1       |
|                    | So coordinates of <i>B</i> are $(4, 3, -6)^*$                                                                                                                                     | conclusion                                                                                                         | AI       |
| ( <b>c</b> )       | $\overrightarrow{OA} = \overrightarrow{OA} + 2\overrightarrow{AB} \text{ or } \overrightarrow{OB} + \overrightarrow{AB}$ $(2+4, 1+4, -2-8) \text{ or } (4+2, 3+2, -6-4)$          | Correct strategy for finding $A'$                                                                                  | M1       |
|                    | (6, 5, -10)                                                                                                                                                                       | Correct coordinates                                                                                                | A1       |
|                    |                                                                                                                                                                                   |                                                                                                                    | (2       |
| ( <b>d</b> )       | NB require line through the                                                                                                                                                       | , ,                                                                                                                |          |
|                    | $\pm (14\mathbf{i} + 9\mathbf{j} + 2\mathbf{k} - (6\mathbf{i} + 5\mathbf{j} - 10\mathbf{k}))$                                                                                     | Correct attempt at the direction                                                                                   | M1       |
|                    | $\mathbf{a} = 8\mathbf{i} + 4\mathbf{j} + 12\mathbf{k}$                                                                                                                           | $\mu (8i + 4j + 12k)$                                                                                              | A1       |
|                    |                                                                                                                                                                                   |                                                                                                                    |          |
|                    | $\mathbf{b} = (6\mathbf{i} + 5\mathbf{j} - 10\mathbf{k}) \times (8\mathbf{i} + 4\mathbf{j} + 12\mathbf{k})$                                                                       |                                                                                                                    |          |
|                    | =(=100i-                                                                                                                                                                          | <b>d</b> M1                                                                                                        |          |
|                    | Attempt vector product of their 6i                                                                                                                                                |                                                                                                                    |          |
|                    | Dependent on                                                                                                                                                                      |                                                                                                                    |          |
|                    | $\mathbf{r} \times (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 25\mathbf{i} - 38\mathbf{j} - 4\mathbf{k}$                                                                          | $\lambda (\mathbf{r} \times (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 25\mathbf{i} - 38\mathbf{j} - 4\mathbf{k})$ | A1       |
|                    | Must be in this form for A                                                                                                                                                        | and not just stating <b>a</b> and <b>b</b>                                                                         |          |
|                    |                                                                                                                                                                                   |                                                                                                                    | (4       |
|                    |                                                                                                                                                                                   |                                                                                                                    | Total 13 |

PMT

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE