Further Statistics 2 Mark Scheme

Questi	on	Scheme						Marks	AOs				
1(a)		Competitor	A	В	С	D	Е	F	G	Н			
		Judge 1's ranks	8	4	7	6	5	1	3	2		M1	
		Judge 2's ranks	8	5	6	7	3	1	4	2			1.1b
		$\frac{d^2}{d^2}$	0	1	1	1	4	0	1	0		3.41	
		и	U	1	1	1	7	U	1	U]	M1	1.1b
	$ _{\Sigma a}$	$\sum d^2 = 8$								1.10			
	$\sum u = 0$												
	$r_s = 1 - \frac{6 \times 8}{8(64 - 1)}$							dM1	1.1b				
	$r_s = 0.90476$ awrt <u>0.905</u>							A1	1.1b				
												(4)	
(b)	(b) H ₀ : $\rho_s = 0$ H ₁ : $\rho_s > 0$							B1	2.5				
	Critical value $\rho_s = 0.8333$						B1	1.1b					
	$r_s = 0.905$ lies in the critical region/reject H ₀					M1	2.1						
	The two judges are in agreement.					A1	2.2b						
								(4)					
(c)	(c) E.g. The data is unlikely to be from a bivariate normal distribution (competitor A)/The emphasis here is on the ranks and not the individual scores.				n	B1	2.4						
												(1)	
(d) Both show positive corre beam (since 0.952 is clos		lation, but the judges agree more on the er to 1)								B1	2.2b		
												(1)	
												(10 n	narks)
Notes:													
M1: 1													
	6 v 9												
(b)	(b)												
		oth hypotheses stated in terms of ρ_s											
	For correct critical value For comparing their '0.905' with their '0.8333'												
1		or a correct contextual conclusion with no contradictions seen											
(c) B1:													

For a correct comparison of the correlation coefficients

(d) B1:

Question	Scheme	Marks	AOs	
2(a)	$P(X < 3) = \int_{1}^{3} \frac{1}{18} (11 - 2x) dx \qquad \underline{\text{or}} \qquad \text{area of trapezium}$	M1	1.1a	
	$= \left[\frac{1}{18}(11x - x^2)\right]_1^3$			
	$=\frac{7}{9}$	A1	1.1b	
(b)	Since $P(X < 3) > 0.75$, the upper quartile is less than 3	B1ft	2.2a	
		(1)		
(c)	$E(X^{2}) = \int_{1}^{4} \frac{1}{18} x^{2} (11 - 2x) dx \left[= \frac{23}{4} \right]$	M1	1.1b	
	$Var(X) = \frac{23}{4} - \left(\frac{9}{4}\right)^2$	M1	1.1b	
	$=\frac{11}{16}$	A1	1.1b	
		(3)		
(d)	$F(4) = 1 \rightarrow \frac{1}{18}(11(4) - 4^{2} + c) = 1 \underline{\text{or}}$ $F(1) = 0 \rightarrow \frac{1}{18}(11(1) - 1^{2} + c) = 0$	M1	2.1	
	c = -10 *	A1*cso	1.1b	
		(2)		
(e)	F(m) = 0.5	M1	1.2	
	$\frac{1}{18}(1 \text{ lm} - m^2 - 10) = 0.5 \rightarrow m^2 - 1 \text{ lm} + 19 = 0$ and attempt to solve	M1	1.1b	
	$m = \frac{11 \pm \sqrt{11^2 - 4(19)}}{2} [= 2.1458 \text{ or } 8.8541]$			
	m = 2.1458 <u>2.15</u> (only)	A1	2.2a	
		(3)		

(11 marks)

Notes:

(a)

M1: For integrating f(x) with correct limits or for finding area of trapezium

A1: For $\frac{7}{9}$ (allow awrt 0.778)

(b)

B1ft: For comparison of their (a) with 0.75 and concluding that the upper quartile is less than 3

(c)

M1: For an attempt to find $E(X^2)$

M1: For use of $Var(X) = E(X^2) - \left(\frac{9}{4}\right)^2$

A1: For $\frac{11}{16}$ (allow awrt 0.688)(M1 marks may be implied by a correct answer)

Question 2 notes continued:

(d)

M1: For use of F(4) = 1 or F(1) = 0

A1*cso: For a fully correct solution leading to given answer with no errors seen

(e)

M1: For use of F(m) = 0.5

M1: For setting up quadratic and attempt to solveA1: For 2.15 and rejecting the other solution

uestion	Scheme		Marks	AO:
3(a)	$r = \frac{284.4 - \frac{251(12)}{10}}{\sqrt{10.36 \times 40.9}}$		M1	1.11
	r = -0.79671 awa	t <u>-0.797</u>	A1	1.1
			(2)	
(b)	$b = \frac{'-16.4'}{10.36}$		M1	3.3
	$a = \frac{251}{10} - b' \frac{12}{10}$		M1	1.1
	y = 27.0 - 1.58 x		A1	1.1
			(3)	
(c)	y = [27.0 - 1.58(2)] = 23.84	awrt <u>23.8</u>	B1ft	3.4
			(1)	
(d)	$RSS = 40.9 - \frac{(-16.4)^2}{10.36}$		M1	1.1
	RSS = 14.938	awrt 14.9	A1	1.1
			(2)	
(e)	\sum residuals = 0 \rightarrow -0.63 + (-0.32) + + f + (-1.	.88) = 0	M1	3.1
	f = <u>-1.04</u>		A1	1.1
			(2)	
(f)	The residuals should be randomly scattered above and so linear model may not be appropriate	below zero	B1	3.5
			(1)	
			(11 n	nark
lotes:				

M1: For a complete correct method for finding r

A1: For awrt –0.797

(b)

M1: For use of a correct model i.e. a correct expression for b (ft their S_{xy})

M1: For use of a correct model i.e. a correct (ft) expression for a

A1: For y = 27.0 - 1.58x [a correct answer here can imply both method marks]

(c)

B1: For awrt 23.8 (evaluating their model found in part (b) with x = 2)

(d)

M1: For a correct expression for RSS

A1: For awrt 14.9

(e)

M1: For use of \sum residuals = 0 [Use of regression equation needs correct sign]

A1: For -1.04

(f)

B1: For identifying that the residuals are not randomly scattered above and below zero and concluding the linear regression model may not be appropriate

Question	Scheme	Marks	AOs
4(a)	$ \begin{array}{c c} \hline & \frac{1}{8} \\ \hline & -3 \\ \hline \end{array} $	B1 (shape) B1 (labels)	1.1b 1.1b
		(2)	
(b)	$P(X < 2(k - X)) = P(X < \frac{2}{3}k)$	M1	3.1a
	$\frac{\frac{2}{3}k - (-3)}{5 - (-3)} = 0.25$	M1	1.1b
	$k = -\frac{3}{2}$	A1	1.1b
		(3)	
(c)	$E(X^{3}) = \int_{-3}^{5} \frac{1}{5 - (-3)} x^{3} dx$	M1	2.1
	$= \left[\frac{1}{32}x^4\right]_{-3}^5 = \frac{1}{32}(5^4 - (-3)^4)$	dM1	1.1b
	=17*	A1*cso	1.1b
		(3)	

(8 marks)

Notes:

(a)

B1: For correct shapeB1: For correct labels

(b)

M1: For simplifying to $P(X < \frac{2}{3}k)$

M1: For equating probability expression to 0.25

A1: For $-\frac{3}{2}$

Another method for part (b) is:

M1: For understanding 2[k-x] = -1 and x = -1

M1: For substitution and attempt to solve

A1: For $-\frac{3}{2}$

(c)

B1: For integrating $x^3 f(x)$

M1: For use of correct limits (dependent on previous M1)

A1*: For fully correct solution leading to the given answer with no errors seen