Question	Scheme	Marks	AOs
1(a)	H ₀ : There is no association between language and gender	B1	1.2
		(1)	
(b)	$\frac{54 \times 85}{150} = 30.6$ *	B1*cso	1.1b
	150 - 50.0		1.10
		(1)	
(c)	Language		
	Expected frequenciesFrenchSpanishMandarin		
	Candar Male 26.43 23.4 15.16	M1	2.1
	Gender Female 34.56 [30.6] 19.83		
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(23-26.43)^{2}}{26.43} + \dots + \frac{(15-19.83)^{2}}{19.83}$	M1	1.1b
	<i>E</i> 20.45 19.85 Awrt 3.6/3.7	A1	1.1b
		(3)	1.10
(d)	Degrees of freedom $(3-1)(2-1) \rightarrow$ Critical value $\chi^2_{2,001} = 9.210$	M1	3.1b
		1011	5.10
	As $\sum \frac{(O-E)^2}{E} < 9.210$, the null hypothesis is not rejected	A1	2.2b
		(2)	
(e)	Still not rejected since $\sum \frac{(O-E)^2}{E} < \chi^2_{2,0.1} = 4.605$	B1	2.4
		(1)	
	·	(8 n	narks)
Notes:			
(a) B1: For	correct hypothesis in context		
(b)			
	a correct calculation leading to the given answer and no errors seen		
(c) M1: For	attempt at $\frac{(\text{Row Total})(\text{Column Total})}{(\text{Grand Total})}$ to find expected frequencies		
M1: For	applying $\sum \frac{(O-E)^2}{E}$		
A1: awr	a 3.6 or 3.7		
(d)			
M1: For using degrees of freedom to set up a χ^2 model critical value			
	correct comparison and conclusion		
(e) A1ft: For	correct conclusion with supporting reason		

Further Statistics 1 Mark Scheme

275

	Scheme	Marks	AOs	
2(a)	-4 = 2 - 5E(X)	M1	3.1	
	E(X) = 1.2			
	$-1 \times c + 0 \times a + 1 \times a + 2 \times b + 3 \times c = 1.2$	M1	1.11	
	a + 2b + 2c = 1.2 1			
	$P(Y \ge -3) = 0.45$ gives $P(2-5X \ge -3) = 0.45$ i.e. $P(X \le 1) = 0.45$	M1	2.1	
	2a + c = 0.45 2		2.1	
	2a + b + 2c = 1	M1	1.11	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	1.11	
	a = 0.1 $b = 0.3$ $c = 0.25$	A1 A1	1.1 1.1	
		(7)		
	$Var(Y) = 75 - (-4)^2 \text{ or } 59$	M1	1.1	
(b)	$[Var(Y) = 5^{2}Var(X) \text{ implies}] Var(X) = 2.36$	A1	1.2	
		(2)		
(c)	$P(Y > X) = P(2 - 5X > X) \rightarrow P(X < \frac{1}{3})$	M1	3.1	
	$P(X < \frac{1}{3}) = a + c = 0.35$	A1ft	1.1	
		(2)		
		(11 marl		

(a)

M1: For using given information to find an expression for E(X) i.e. use of E(Y) = 2 - 5E(X)

M1: For use of $\sum x P(X = x) = `1.2'$

M1: For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation in *a* and *c*

M1: For use of $\sum P(X = x) = 1$

M1: For solving their 3 linear equations (matrix or elimination)

- A1: For any 2 of *a*, *b* or *c* correct
- A1: For all 3 correct values

Ques	Question 2 notes continued:		
Anoth	Another method for part (a) is:		
M1:	For using given information to find the probability distribution for Y leading to an		
	expression for E(Y)		
M1:	For use of $\sum y P(Y = y) = -4$		
M1:	For use of $P(Y \ge -3) = 0.45$ to set up the argument for solving by forming an equation		
	in <i>a</i> and <i>c</i>		
M1:	For use of $\sum P(Y = y) = 1$		
M1:	For solving their 3 linear equations (matrix or elimination)		
A1:	For any 2 of a, b or c correct		
A1:	For all 3 correct values		
(b)			
M1:	For use of $Var(Y) = E(Y^2) - [E(Y)]^2$ (may be implied by a correct answer)		
A1:	For use of $Var(aX) = a^2 Var(X)$ to reach 2.36 or exact equivalent		
(c)			
M1:	For rearranging to the form $P(X < k)$		
A1ft:	0.1' + '025' (provided their a and c and their $a + c$ are all probabilities)		
1	ner method for part (c) is:		
M1:	For comparing distribution of X with distribution of Y to identify $X = -1$ and $X = 0$		
A1ft:	'0.1' + '025' (provided their a and c and their $a + c$ are all probabilities)		

Quest	tion Scheme	Marks	AOs
3 (a) $X \sim Po(2.6)$ $Y \sim Po(1.2)$		
	P(each hire 2 in 1 hour)	M1	3.3
	$= P(X=2) \times P(Y=2) = 0.25104 \times 0.21685$		5.5
	= 0.05444 awrt <u>0.0544</u>	A1	1.1b
		(2)	
(b)	$W = X + Y \longrightarrow W \sim \operatorname{Po}(3.8)$	M1	3.4
	P(W=3) = 0.20458 awrt <u>0.205</u>	A1	1.1b
		(2)	
(c)	$T \sim \text{Po}((2.6+1.2) \times 2)$	M1	3.3
	P(T < 9) = 0.64819 awrt <u>0.648</u>	A1	1.1b
		(2)	
(d)	(i) Mean = $np = 2.4$	B1	1.1b
	(ii) Variance = $np(1-p) = 2.3904$ awrt <u>2.39</u>	B1	1.1b
		(2)	
(e)	(i) $[D \sim Po(2.4) P(D \leq 4)]$		
	= 0.9041 awrt 0.904	B1	1.1b
	(ii) Since <i>n</i> is large and <i>p</i> is small/mean is approximately equal to variance	B1	2.4
		(2)	
		(10 n	narks)
Notes			
(a) M1:	For $P(X=2) \times P(Y=2)$ from $X \sim Po(2.6)$ and $Y \sim Po(1.2)$ i.e. correct mo	dala (may b	~
	implied by correct answer)	dels (may b	e
A1:	awrt 0.0544		
(b)			
M1:	For combining Poisson distributions and use of Po('3.8') (may be implied answer)	by correct	
A1:	awrt 0.205		
(c)			
M1:	For setting up a new model and attempting mean of Poisson distribution (may be imp	lied
A1:	by correct answer) awrt 0.648		
(d)(i)			
B1:	For 2.4		
(d)(ii)			
B1:	For awrt 2.39		
(e)(i)	For awrt 0.904		
B1:	F01 aw11 0.904		
(e)(ii) B1:	For a correct explanation to support use of Poisson approximation in this	case	

Quest	on Scheme	Marks	AOs	
4(a)	(i) $P(X=1) = 0.34523$ awrt <u>0.345</u>	B1	1.1b	
	(ii) $P(X \le 4) = 0.98575$ awrt <u>0.986</u>	B1	1.1b	
		(2)		
(b)	$\frac{(0 \times 10) + 1 \times 16 + 2 \times 7 + 3 \times 4 + 4 \times 2 + (5 \times 0) + 6 \times 1}{40} = 1.4^{*}$	B1*cso	1.1b	
		(1)		
(c)	$r = 40 \times 0.34523$ $s = 40 \times 1 - 0.986$	M1	3.4	
	r = 13.81 $s = 0.57$	A1ft	1.1b	
		(2)		
(d)	H ₀ : The Poisson distribution is a suitable model H ₁ : The Poisson distribution is not a suitable model	B1	3.4	
	[Cells are combined when expected frequencies < 5] So combine the last 3 cells	M1	2.1	
	$\chi^{2} = \sum \frac{(O-E)^{2}}{E} = \frac{(10-9.86)^{2}}{9.86} + \dots + \frac{(7-(4.51+1.58+0.57))^{2}}{(4.51+1.58+0.57)}$	M1	1.1b	
	awrt <u>1.1</u>	A1	1.1b	
	Degrees of freedom = $4 - 1 - 1 = 2$	B1	3.1b	
	(Do not reject H ₀ since $1.10 < \chi^2_{2,(0.05)} = 5.991$). The number of mortgages approved each week follows a Poisson distribution	A1	3.5a	
		(6)		
		(11 n	narks)	
Notes				
(a)(i) B1:	awrt 0.345			
(a)(ii) B1:	awrt 0.986			
	For a fully correct calculation leading to given answer with no errors seen			
	For attempt at <i>r</i> or <i>s</i> (may be implied by correct answers) For both values correct (follow through their answers to part (a))			
	For both hypotheses correct (lambda should not be defined so correct use of the model) For understanding the need to combine cells before calculating the test statistic (may be implied)			
M1:	For attempt to find the test statistic using $\chi^2 = \sum \frac{(O-E)^2}{E}$			
A1: B1:	awrt 1.1 For realising that there are 2 degrees of freedom leading to a critical value of $\chi_2^2(0.05) = 5.991$			
A1:	Concluding that a Poisson model is suitable for the number of mortgages ap week	oproved ea	ch	