Further Mechanics 2 Mark Scheme

Questio	Scheme	Marks	AOs	
1 (a)	Multiply out and differentiate wrt t	M1	1.1b	
	$v = 3t^2 - 16t + 20 \Rightarrow a = 6t - 16$	A1	1.1b	
		(2)		
(b)	Multiply out and integrate wrt t	M1	1.1b	
	$s = \int 3t^2 - 16t + 20dt = t^3 - 8t^2 + 20t(+C)$	A1	1.1b	
	$t = 0, s = 0 \implies C = 0$			
	t = 2, s = 8 - 32 + 40 = 16	A1	1.1b	
		(3)		
(c)	$s = 0 \Rightarrow t^3 - 8t^2 + 20t = 0$ and $t \neq 0 \Rightarrow t^2 - 8t + 20 = 0$	M1	2.1	
	Explanation to show that $t^2 - 8t + 20 > 0$ for all t .	M1	2.4	
	So $s = 0$ has no non-zero solutions, so s is never zero again, so never returns to O *	A1*	3.2a	
		(3)		
		(8 1	marks)	
Notes:				
A1: Fo				
(b)				
	For multiplying out and integrating (powers increasing by 1)			
	For a correct expression for s with or without C For $C = 0$ and correct final answer			
(c)	To and correct musual			
M1: Fo	For equating their s to 0 and producing a quadratic For clear explanation that $t^2 - 8t + 20 > 0$ for all t (e.g. completing the square or another			

complete method)

A1*: For a correct conclusion in context

Question	Scheme	Marks	AOs
2(a)	$\cos \alpha = \frac{4}{5} \text{ or } \sin \alpha = \frac{3}{5}$	B1	1.1b
	$r = 4a\sin\alpha$	B1	1.1b
	Resolving vertically	M1	3.1b
	$T_1 \cos \alpha - T_2 \sin \alpha = mg$	A1	1.1b
	Resolving horizontally	M1	3.1b
	$T_1 \sin \alpha + T_2 \cos \alpha = mr\omega^2$	A1	1.1b
	$T_1 \sin \alpha + T_2 \cos \alpha = mr\omega^2$	A1	1.1b
	Solving for either tension	M1	2.1
	$T_1 = \frac{4m}{25}(9a\omega^2 + 5g) *$	A1*	1.1b
	$T_2 = \frac{3m}{25} (16a\omega^2 - 5g) *$	A1*	1.1b
		(10)	
(b)	$\frac{4m}{25}(9a\omega^2 + 5g) < 4mg$	M1	2.1
	$\frac{3m}{25}(16a\omega^2 - 5g) > 0$	M1	2.1
	$\omega > \sqrt{\frac{5g}{16a}} \text{ or } \omega < \sqrt{\frac{20g}{9a}}$	A1	2.2a
	$S = \frac{2\pi}{\omega}$	M1	1.1b
	$3\pi\sqrt{\frac{a}{5g}} < S < 8\pi\sqrt{\frac{a}{5g}} *$	A1*	1.1b
		(5)	
(c)	String being light implies that the tension is constant in both portions of the string	B1	3.5b
		(1)	
		(16 r	marks)

Notes:

(a)

B1: For correct trig. ratio seen

B1: For a correct radius expression seen

For resolving vertically with correct no. of terms and tensions resolved M1:

A1: For a correct equation

For resolving horizontally with correct no. of terms and tensions resolved **M1:**

A1A1: For a correct equation

M1: For solving their two equations to find either tension

A1*: For the given answer

A1*: For the given answer

Question 2 notes continued:

(b)

M1: For use of $T_1 < 4mg$

M1: For using $T_2 > 0$

A1: For a correct inequality (either) for ω

M1: For use of $S = \frac{2\pi}{\omega}$ with either critical value

A1*: For given answer

(c)

B1: For a clear explanation

Question	Scheme	Marks	AOs
3(a)	Rel. Mass: 2 5 1 8	B1	1.2
	$y:$ 2 0.5 1.5 \overline{y}	B1	1.2
	$x:$ 0.5 2.5 4.5 \overline{x}	B1	1.2
	$(2 \times 2) + (5 \times 0.5) + (1 \times 1.5) = 8 \overline{y}$	M1	2.1
	$\overline{y} = 1 *$	A1*	1.1b
	$(2 \times 0.5) + (5 \times 2.5) + (1 \times 4.5) = 8\overline{x}$	M1	2.1
	$\overline{x} = 2.25$	A1	1.1b
		(7)	
(b)	Use of correct strategy to solve the problem by use of 'moments equation'	M1	3.1b
	$(8 \times 2.25) - (2\pi r^2 \times 0.5) = (8 - 2\pi r^2)2.5$	A1ft	1.1b
	Solving for r	M1	1.1b
	$r = \frac{1}{\sqrt{2\pi}} = 0.399$	A1	1.1b
		(4)	
(c)	Since \overline{y} for original plate is 1, holes must be symmetrically placed about the line $y = 1$	B1	2.4
	a = 1.5	B1	2.2a
		(2)	
(d)	Use of tan from an appropriate triangle	M1	1.1a
	$\tan \alpha = \frac{2}{1.5} = \frac{4}{3}$	A1ft	1.1b
	$\alpha = 53.1^{\circ}$	A1	1.1b
		(3)	
		(16 n	narks)

(16 marks)

Notes:

(a)

B1: For correct relative masses

B1: For correct y values

B1: For correct *x* values

M1: For a moments equation, correct no. of terms, condone sign errors

A1*: For a correct given answer (1)

For a moments equation, correct no. of terms M1:

For 2.25 **A1:**

(b)

M1: For a moments equation, correct no. of terms, condone sign errors

A1ft: For a correct equation, follow through on their \bar{x}

M1: For solving for r

A1: For 0.399 or 0.40

Question 3 notes continued:		
(c)		
B1:	For consideration of symmetry about $y = 1$	
B1:	For $a = 1.5$	
(d)		
M1:	For use of tan from an appropriate triangle	
A1ft:	For a correct equation, follow through on their a	
A1:	For a correct angle	