| Write your name here | | | |--|------------------------------|-------------------------| | Surname | Other nam | es | | Pearson Edexcel
Level 3 GCE | Centre Number | Candidate Number | | Further M Advanced Subsidiary Further Mathematics of Further Pure Mathemat | otions | tics | | Sample Assessment Material for first to Time: 50 minutes | eaching September 2017 | Paper Reference 8FM0/2A | | You must have:
Mathematical Formulae and Sta | atistical Tables, calculator | Total Marks | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## **Instructions** - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 5 questions in this question paper. The total mark for this paper is 40. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each guestion. ## Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ \$58538A ©2017 Pearson Education Ltd. | Answer ALL questions | . Write your answers | s in the spaces | provided | |-----------------------------|----------------------|-----------------|----------| |-----------------------------|----------------------|-----------------|----------| 1. Given that $$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix}$$ (a) find the characteristic equation of the matrix \mathbf{A} . (2) (b) Hence show that $A^3 = 43A - 42I$. (3) | Question 1 continued | | |----------------------|-----------------------------------| (Total for Question 1 is 5 marks) | | | | | 2. (i) Without performing any division, explain why 8184 is divisible by 6 | (2) | |--|-----| | (ii) Use the Euclidean algorithm to find integers a and b such that | | | 27a + 31b = 1 | | | | (4) | Question 2 continued | | |----------------------|------------------------------| (Tota | l for Question 2 is 6 marks) | | 3. A curve <i>C</i> is described by the equation | | |---|-----| | z - 9 + 12i = 2 z | | | (a) Show that C is a circle, and find its centre and radius. | | | (a) Show that e is a chere, and that its centre and radius. | (4) | | (b) Sketch C on an Argand diagram. | | | (b) Sketch C on an Argand diagram. | (2) | | Given that whice on C | | | Given that w lies on C , | | | (c) find the largest value of a and the smallest value of b that must satisfy | | | $a \leqslant \text{Re}(w) \leqslant b$ | | | | (2) | Question 3 continued | | |----------------------|------------------------------------| (Total for Operation 2 is 8 marks) | | | (Total for Question 3 is 8 marks) | **4.** The operation * is defined on the set $S = \{0, 2, 3, 4, 5, 6\}$ by $x*y = x + y = xy \pmod{7}$ | * | 0 | 2 | 3 | 4 | 5 | 6 | |---|---|---|---|---|---|---| | 0 | | | | | | | | 2 | | 0 | | | | | | 3 | | | | | | 5 | | 4 | | | | | | | | 5 | | 4 | | | | | | 6 | | | | | | | - (a) (i) Complete the Cayley table shown above - (ii) Show that S is a group under the operation *(You may assume the associative law is satisfied.) **(6)** (b) Show that the element 4 has order 3 (2) (c) Find an element which generates the group and express each of the elements in terms of this generator. (3) | Question 4 continued | | |----------------------|------------------------------------| (Total for Question 4 is 11 marks) | | | | **5.** A population of deer on a large estate is assumed to increase by 10% during each year due to natural causes. The population is controlled by removing a constant number, Q, of the deer from the estate at the end of each year. At the start of the first year there are 5000 deer on the estate. Let P_n be the population of deer at the end of year n. (a) Explain, in the context of the problem, the reason that the deer population is modelled by the recurrence relation $$P_n = 1.1 P_{n-1} - Q, \quad P_0 = 5000, \quad n \in \mathbb{Z}^+$$ (3) - (b) Prove by induction that $P_n = (1.1)^n (5000 10Q) + 10Q$, $n \ge 0$ (5) - (c) Explain how the long term behaviour of this population varies for different values of Q. (2) | ****** | |---| | ****** | | 000000 | | | | | | | | ****** | | ~~~~ | | ******** | | | | XX | | M | | × × × | | XXX | | | | | | <u>S</u> | | × = × | | | | \otimes | | **** | | ×=× | | | | XX 11 XX | | | | ₩ | | | | *** | | FWR | | ₩ | | | | DO NOT W | | ** * | | XXXXXX | | 00 | | \times | | | | ******* | | ***** | | ****** | | | | ~~~~ | | | | | | ****** | | ****** | | 000000 | | ******* | | | | ****** | | ****** | | ****** | | ****** | | ***** | | XX XX | | 880088 - | | 000000 | | | | XXXXX | | | | × = × × × | | | | XXXIXXX | | | | | | | | | | | | | | | | SIZE IN T | | | | WRITE IN T | | SIZE IN T | | WRITE IN T | | OT WRITE IN T | | OT WRITE IN T | | NOT WRITE IN T | | NOT WRITE IN T | | NOT WRITE IN T | | DO NOT WRITE IN TI T | | DO NOT WRITE IN T | | DO NOT WRITE IN T | | DO NOT WRITE IN TI | | A DO NOT WRITE IN TI | | AREA IN THIS AREA DO NOT WRITE IN TI | | EIN THIS AREA DO NOT WRITE IN TI | | FE IN THIS AREA DO NOT WRITE IN TI | | TE IN THIS AREA DO NOT WRITE IN TI | | RITE IN THIS AREA DO NOT WRITE IN TI | | /RITE IN THIS AREA DO NOT WRITE IN TI | | WRITE IN THIS AREA DO NOT WRITE IN TI | | WRITE IN THIS AREA DO NOT WRITE IN TI | | T WRITE IN THIS AREA DO NOT WRITE IN TI | | OT WRITE IN THIS AREA DO NOT WRITE IN TI | | OT WRITE IN THIS AREA DO NOT WRITE IN TI | | NOT WRITE IN THIS AREA DO NOT WRITE IN TI | | NOT WRITE IN THIS AREA DO NOT WRITE IN TI | | NOT WRITE IN THIS AREA DO NOT WRITE IN TI | | Question 5 continued | | |----------------------|--| Question 5 continued | |------------------------------------| (Total for Question 5 is 10 marks) | | | | TOTAL IS 40 MARKS |