Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Consider $\det \begin{pmatrix} 3-\lambda & 1 \\ 6 & 4-\lambda \end{pmatrix} = (3-\lambda)(4-\lambda)-6$	M1	1.1b
	So $\lambda^2 - 7\lambda + 6 = 0$ is characteristic equation	A1	1.1b
		(2)	
	So $\mathbf{A}^2 = 7\mathbf{A} - 6\mathbf{I}$	B1ft	1.1b
(b)	Multiplies both sides of their equation by A so $\mathbf{A}^3 = 7\mathbf{A}^2 - 6\mathbf{A}$	M1	3.1a
	Uses $\mathbf{A}^3 = 7(7\mathbf{A} - 6\mathbf{I}) - 6\mathbf{A}$ So $\mathbf{A}^3 = 43\mathbf{A} - 42\mathbf{I}^*$	A1*cso	1.1b
		(3)	

(5 marks)

Notes:

(a)

M1: Complete method to find characteristic equation

A1: Obtains a correct three term quadratic equation – may use variable other than λ

(b)

B1ft: Uses Cayley Hamilton Theorem to produce equation replacing λ with **A** and constant term with constant multiple of identity matrix, **I**

M1: Multiplies equation by A

A1*: Replaces A^2 by linear expression in A and achieves printed answer with no errors

Question	Scheme	Marks	AOs
2(i)	Adding digits $8+1+8+4=21$ which is divisible by 3 (or continues to add digits giving $2+1=3$ which is divisible by 3) so concludes that 8184 is divisible by 3	M1	1.1b
	8184 is even, so is divisible by 2 and as divisible by both 3 and 2, so it is divisible by 6	A1	1.1b
		(2)	
(ii)	Starts Euclidean algorithm $31=27 \times 1 + 4$ and $27 = 4 \times 6 + 3$	M1	1.2
	$4 = 3 \times 1 + 1$ (so hcf = 1)	A1	1.1b
	So $1 = 4 - 3 \times 1 = 4 - (27 - 4 \times 6) \times 1 = 4 \times 7 - 27 \times 1$	M1	1.1b
	$(31-27 \times 1) \times 7 - 27 \times 1 = 31 \times 7 - 27 \times 8$ a = -8 and b = 7	A1cso	1.1b
		(4)	

(6 marks)

Notes:

(i)

M1: Explains divisibility by 3 rule in context of this number by adding digits

A1: Explains divisibility by 2, giving last digit even as reason and makes conclusion that number is divisible by 6

(ii)

M1: Uses Euclidean algorithm showing two stages

A1: Completes the algorithm. Does not need to state that hcf = 1

M1: Starts reversal process, doing two stages and simplifying

A1cso: Correct completion, giving clear answer following complete solution

Question	Scheme	Marks	AOs		
3(a)	$(x-9)^2 + (y+12)^2 = 4[x^2 + y^2]$	M1	2.1		
	$3x^2 + 3y^2 + 18x - 24y - 225 = 0$ which is the equation of a circle		2.2a		
	As $x^2 + y^2 + 6x - 8y - 75 = 0$ so $(x+3)^2 + (y-4)^2 = 10^2$	M1	1.1b		
	Giving centre at (-3, 4) and radius = 10				
		(4)			
(b)		M1	1.1b		
	-3+4i	A1	1.1b		
		(2)			
(c)	Values range from their $-3-10$ to their $-3+10$	M1	3.1a		
	So $-13 \le \text{Re}(w) \le 7$	A1ft	1.1b		
		(2)			

(8 marks)

Notes:

(a)

M1: Obtains an equation in terms of x and y using the given information

A1: Expands and simplifies the algebra, collecting terms and obtains a circle equation correctly, deducing that this is a circle

M1: Completes the square for their equation to find centre and radius

A1ft: Both correct

(b)

M1: Draws a circle with centre and radius as given from their equation

A1: Correct circle drawn, as above, with centre at -3 + 4i and passing through all four quadrants

(c)

M1: Attempts to find where a line parallel to the real axis, passing through the centre of the circle, meets the circle so using "their -3-10" to "their -3+10"

A1ft: Correctly obtains the correct answer for their centre and radius

Question					Scher	ne			Marks	AOs			
4(a)(i)													
	*	0	2	3	4	5	6						
	0	0	2	3	4	5	6						
	2	2	0			4			M1	1.1b			
	3	3					5		1411	1.10			
	4	4											
	5	5	4										
	6	6		5									
				,			1						
	*	0	2	3	4	5	6						
	0	0	2	3	4	5	6						
	2	2	0	6	5	4	3		M1	1.1b			
	3	3	6	4	2	0	5		A1	1.1b			
	4	4	5	2	6	3	0						
	5	5	4	0	3	6	2						
	6	6	3	5	0	2	4						
(ii)	Identity	is zero	and tl	nere is	closure	as shov	vn above		M1	2.1			
		nd 5 are inverses, 4 and 6 are inverses, 2 is self-inverse,						M1	2.5				
	0 is iden												
	Asso	ciative	e law n	nay be a	assume	d so S fo	orms a group)	A1	1.1b			
									(6)				
(b)	4*4*4 =	4* (4	* 4) =	4 * 6 o	r 4*4*4	4 = (4*	4) * 4 = 6* 4	ļ.	M1	2.1			
	= 0 (the identity) so 4 has order 3						A1	2.2a					
									(2)				
(c)	3 and 5 each have order 6 so either generates the group						M1	3.1a					
	Either $3^1 = 3$, $3^2 = 4$, $3^3 = 2$, $3^4 = 6$, $3^5 = 5$, $3^6 = 0$								1.1b				
	Or $5^1 =$	$5, 5^2$	$=6, 5^3$	$=2, 5^4$	$=4, 5^5$	$=3, 5^6$	= 0		A1, A1 1.				
									(3)				
									(11 marks)				

Question 4 notes:

(a)(i)

M1: Begins completing the table – obtaining correct first row and first column and using symmetry

M1: Mostly correct – three rows or three columns correct (so demonstrates understanding of using *

A1: Completely correct

(a)(ii)

M1: States closure and identifies the identity as zero

M1: Finds inverses for each element

A1: States that associative law is satisfied and so all axioms satisfied and S is a group

(b)

M1: Clearly begins process to find 4*4*4 reaching 6*4 or 4*6 with clear explanation

A1: Gives answer as zero, states identity and deduces that order is 3

(c)

M1: Finds either 3 or 5 or both

A1: Expresses four of the six terms as powers of either generator correctly (may omit identity and generator itself)

A1: Expresses all six terms correctly in terms of either 3 or 5 (Do not need to give both)

uestion	Scheme	Marks	AOs
5(a)	P_{n-1} is the population at the end of year $n-1$ and this is increased by 10% by the end of year n , so is multiplied by $110\% = 1.1$ to give $1.1 \times P_{n-1}$ as new population by natural causes	B1	3.3
	Q is subtracted from $1.1 \times P_{n-1}$ as Q is the number of deer removed from the estate	B1	3.4
	So $P_n = 1.1P_{n-1} - Q$, $P_0 = 5000$ as population at start is 5000 and $n \in \mathbb{Z}^+$	B1	1.1b
		(3)	
(b)	Let $n = 0$, then $P_0 = (5000 - 10Q)(1.1)^0 + 10Q = 5000$ so result is true when $n = 0$	B1	2.1
	Assume result is true for $n = k$, $P_k = (1.1)^k (5000 - 10Q) + 10Q$, then as $P_{k+1} = 1.1P_k - Q$, so $P_{k+1} =$	M1	2.4
	$P_{k+1} = 1.1 \times 1.1^{k} (5000 - 10Q) + 1.1 \times 10Q - Q$	A1 A1	1.1b
	So $P_{k+1} = (5000 - 10Q)(1.1)^{k+1} + 10Q$,		1.1b
	Implies result holds for $n = k + 1$ and so by induction $P_n = (5000 - 10Q)(1.1)^n + 10Q$, is true for all integer n	B1	2.2a
		(5)	
(c)	For $Q < 500$ the population of deer will grow, for $Q > 500$ the population of deer will fall	B1	3.4
	For $Q = 500$ the population of deer remains steady at 5000,	B1	3.4
		(2)	

(10 marks)

Notes:

(a)

B1: Need to see 10% increase linked to multiplication by scale factor 1.1

B1: Needs to explain that subtraction of Q indicates the removal of Q deer from population

B1: Needs complete explanation with mention of $P_n = 1.1P_{n-1} - Q$, $P_0 = 5000$ being the initial number of deer

(b)

B1: Begins proof by induction by considering n = 0

M1: Assumes result is true for n = k and uses iterative formula to consider n = k + 1

A1: Correct algebraic statement

A1: Correct statement for k + 1 in required form

B1: Completes the inductive argument

(c)

B1: Consideration of both possible ranges of values for Q as listed in the scheme

B1: Gives the condition for the steady state