| Surname MODEL SOLUTIO | NS Other nan | Other names | | | | | | |--|---------------|-------------------------|--|--|--|--|--| | Pearson Edexcel
Level 3 GCE | Centre Number | Candidate Number | | | | | | | Further Mathematics Advanced Subsidiary Further Mathematics options Further Pure Mathematics 2 | | | | | | | | | | | | | | | | | | | tics 2 | Paper Reference 8FM0/2A | | | | | | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ### **Instructions** - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Answers should be given to three significant figures unless otherwise stated. #### Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 5 questions in this question paper. The total mark for this paper is 40. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. #### Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ S58538A ©2017 Pearson Education Ltd. 1/1/1/1/ # Answer ALL questions. Write your answers in the spaces provided. 1. Given that $$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix}$$ (a) find the characteristic equation of the matrix A. (2) (b) Hence show that $A^3 = 43A - 42I$. a) $$A - \lambda I = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ (3) $$det(A-\lambda I) = 0$$ $$\Rightarrow$$ (3- λ) (4- λ) - (6)(1) = 0 $$12 - 7\lambda + \lambda^2 - 6$$ $$\lambda^2 - 7\lambda + 6 = 0$$ b) from (a) using the Cayley-Hamilton theorem ... $$A^{2} - 7A + 6I = 0$$ $$A^2 = 7A - 6I$$ $7A^2 = 49A - 42I$ consider $$7A^2 - 6A$$, $A^2 = \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix} = \begin{pmatrix} 9+6 & 3+4 \\ 18+24 & 6+16 \end{pmatrix}$ $$A^2 = \begin{pmatrix} 15 & 7 \\ 42 & 22 \end{pmatrix}$$ ## **Question 1 continued** $$7A^2 = 7 \begin{pmatrix} 15 & 7 \\ 42 & 22 \end{pmatrix}$$ so $$7A^2 - 6A = \begin{pmatrix} 105 & 49 \\ 294 & 154 \end{pmatrix} - \begin{pmatrix} 18 & 6 \\ 36 & 24 \end{pmatrix}$$ $$=$$ $\begin{pmatrix} 87 & 43 \\ 258 & 130 \end{pmatrix}$ and $$A^3 = \begin{pmatrix} 15 & 7 \\ 42 & 22 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 6 & 4 \end{pmatrix}$$ $$= \begin{pmatrix} 87 & 43 \\ 258 & 130 \end{pmatrix}$$ hence A ³= 43A - 42I (Total for Question 1 is 5 marks) 2. (i) Without performing any division, explain why 8184 is divisible by 6 **(2)** (ii) Use the Euclidean algorithm to find integers a and b such that $$27a + 31b = 1$$ **(4)** - i) A number is divisible by 6 if it is divisible by both 2&3: - 8184 ends with 4 so it is an even number ... divisible by 2 - sum of digits : 8+1+8+4 = 21 2+1 = 3 → divisible by 3 : 8184 is divisible by 3 - => 8184 is divisible by both 2 & 3 so it is also divisible by 6. - ii) 31 = 27(1) + 4 $$27 = 4(6) + 3$$ $$4 = 3(1) + 1$$ so hcf (31, 27)=1 hence 27a + 31b=1 hcf back substitution: 1= 4-3 $$= (31-27)-(27)+(31-27)(6)$$ **3.** A curve *C* is described by the equation $$|z - 9 + 12i| = 2|z|$$ (a) Show that C is a circle, and find its centre and radius. (4) (b) Sketch C on an Argand diagram. (2) Given that w lies on C, (c) find the largest value of a and the smallest value of b that must satisfy $$a \leq \text{Re}(w) \leq b$$ (2) $$(3n^2 + 3y^2 + 18n - 24y) = 225$$ $$n^2 + y^2 + 6n - 8y = 75$$ $$(n+3)^2-9+(y-4)^2-16=75$$ $$(x+3)^2 + (y-4)^2 = 100$$ b) c) We want the points on the circle with the greatest / lowest real components $$so...a = -3 - 10 = -13$$ radius of centre **4.** The operation * is defined on the set $S = \{0, 2, 3, 4, 5, 6\}$ by $x*y = x + y - xy \pmod{7}$ | * | 0 | 2 | 3 | 4 | 5 | 6 | |---|---|---|---|---|---|---| | 0 | 0 | 2 | 3 | 4 | 5 | 6 | | 2 | 2 | 0 | 6 | 5 | 4 | 3 | | 3 | 3 | 6 | 4 | 2 | O | 5 | | 4 | 4 | 5 | 2 | 6 | 3 | 0 | | 5 | 5 | 4 | 0 | 3 | 6 | 2 | | 6 | 6 | 3 | 5 | 0 | 2 | 4 | - (a) (i) Complete the Cayley table shown above - (ii) Show that S is a group under the operation * (You may assume the associative law is satisfied.) **(6)** (b) Show that the element 4 has order 3 (2) (c) Find an element which generates the group and express each of the elements in terms of this generator. (3) aii) Identity: 0 is the identity closure : all values in the table ES so there is closure Inverses : O is self-inverse (identity) 2 is self-inverse 3 & 5 are inverses of each other 4 & 6 are inverses of each other Associativity: assumed so ... yes, S is a group under the operation **Question 4 continued** $$= 10 - 24 \pmod{7}$$ $$3^3 = 2$$ **5.** A population of deer on a large estate is assumed to increase by 10% during each year due to natural causes. The population is controlled by removing a constant number, Q, of the deer from the estate at the end of each year. At the start of the first year there are 5000 deer on the estate. Let P_n be the population of deer at the end of year n. (a) Explain, in the context of the problem, the reason that the deer population is modelled by the recurrence relation $$P_n = 1.1 P_{n-1} - Q, \qquad P_0 = 5000, \qquad n \in \mathbb{Z}^+$$ (3) - (b) Prove by induction that $P_n = (1.1)^n (5000 10Q) + 10Q$, $n \ge 0$ - (c) Explain how the long term behaviour of this population varies for different values of Q. **(2)** (5) - a). Po = 5000 as at the start of the first year there are 5000 deers . we have 1.1 Pn-1 as population increases by 10% each year. This is equivalent to multiplying by 1.1. Pn-1 is the population at the end of year n-1. - · each year Q deers are removed so we subtract Q from 1.1 Pn-1 giving us Pn = 1.1 Pn-1 Q $$n=0: P_0 = (1.1)^0 (5000 - 10Q) + 10Q$$ = 5000 -10Q + 10Q = 5000 · true when n=0 Now assume true for n=k: $$p_k = (1.1)^k (5000 - 10Q) + 10Q$$ $$P_{k+1} = 1.1 [(1.1)^{k} (5000 - 10Q) + 10Q] - Q$$ = $(1.1)^{k+1} (5000 - 10Q) + 11Q - Q$ = $(1.1)^{k+1} (5000 - 10Q) + 10Q$: true for n=k+1 | Question 5 continued | | | | | | | | |---|--|--|--|--|--|--|--| | · solution is true for n=0 | | | | | | | | | · when assumed true for n=k, it is also true for n=k+1 | | | | | | | | | So by mathematical induction it is true for all n E Z+ | | | | | | | | | | | | | | | | | | c) when Q = 500 , 5000 - 10 Q = 0 | | | | | | | | | - so at Q=500 the population will remain steady at 5000 | | | | | | | | | - when Q > 500 the population will fall (since 5000-10Q<0) | | | | | | | | | - when Q < 500 the population will increase (since 5000-10Q >0) | Question 5 continued | | | |-----------------------------|--|--| |