

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Further Mathematics AS Further Pure Mathematics FP1 Paper 8FM0_21

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 8FM0_21_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 40.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the most complete.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Questi	on Scheme	Marks	AOs	
1	$t = \tan\left(\frac{x}{2}\right)$, $5\sin x + 12\cos x = 2 \implies 7t^2 - 5t - 5 = 0$			
(a)	$\left\{5\sin x + 12\cos x = \right\} 5\left(\frac{2t}{1+t^2}\right) + 12\left(\frac{1-t^2}{1+t^2}\right)$	M1	1.1b	
	$5\left(\frac{2t}{1+t^2}\right) + 12\left(\frac{1-t^2}{1+t^2}\right) = 2 \implies 5(2t) + 12(1-t^2) = 2(1+t^2)$	M1	1.1b	
	$7t^2 - 5t - 5 = 0*$	A1*	2.1	
		(3)		
(b)	$t = \frac{5 \pm \sqrt{5^2 - 4(7)(-5)}}{2(7)} \left\{ = \frac{5 \pm \sqrt{165}}{14} = 1.2746, -0.5603 \right\}$	M1	1.1a	
	$\frac{x}{2} = \arctan\left(\frac{5 + \sqrt{165}}{14}\right) \text{ or } \frac{x}{2} = \arctan\left(\frac{5 - \sqrt{165}}{14}\right) \text{ and } \Rightarrow x = \dots$	M1	3.1a	
	$x = \text{awrt } 104^{\circ} \text{ or } x = \text{any answer in the range } [-58.6^{\circ}, -58^{\circ}]$	A1	1.1b	
	$x = 103.8^{\circ}$ and $x = -58.5^{\circ}$	A1	1.1b	
		(4)		
	Notes (7 marks)			
(a)	Notes			
M1:	Uses at least one of $\sin x = \frac{2t}{1+t^2}$ or $\cos x = \frac{1-t^2}{1+t^2}$ to express $5\sin x + 12$	$2\cos x$		
	in terms of <i>t</i> only			
M1:		Uses both correct formula $\sin x = \frac{2t}{1+t^2}$ and $\cos x = \frac{1-t^2}{1+t^2}$ in $5\sin x + 12\cos x$,		
	equates their expression to 2 and eliminates the fractions			
A1*:	Collects terms to one side and simplifies to obtain the printed answer			
(b) M1:	Selects a correct process (e.g. using the quadratic formula, completing the square or			
WII.	calculator approach) to solve $7t^2 - 5t - 5 = 0$	ne square c	Л	
Note:	Allow 1 st M1 for at least one of awrt 1.3 or awrt -0.6 or for a correct expression of the second secon	xact value	of t	
Note:	Do not allow an attempt at factorisation of $7t^2 - 5t - 5$ for the 1 st M1			
M1:	Adopts a correct <i>applied</i> strategy of taking $\arctan(\text{their found } t)$ and m	ultiplying 1	the	
1.22.	result by 2 to obtain at least one value for x within the range $-180^{\circ} < x < 10^{\circ}$		-	
	(or in radians $-\pi < x < \pi$)	- 3		
A1:	See scheme			
A1:	For both 103.8 and -58.5			
Note:	Give final A0 for extra solutions given within the range $-180^{\circ} < x < 180^{\circ}$			
Note:	Ignore extra solutions outside the range $-180^{\circ} < x < 180^{\circ}$ for the final A	Mark mark		
Note:	In degrees, $\frac{x}{2} = \{51.88, -128.11, -29.26, 150.73\}$			
Note:	Working in radians gives $\frac{x}{2} = \{0.905, -0.510\} \Rightarrow x = \{1.81, -1.02\}$			
Note:	Give 2 nd M0 for $\frac{x}{2} = \{51.88, -29.26\} \implies x = \{25.9, -14.6\}$			

Questi	ion	Scheme	Marks	AOs
2		$\frac{d\theta}{dt} = -k(\theta - 20), k \text{ is a constant. } \theta_0 = 80$		
(a)		{Two iterations from $t = 0$ to $t = 3 \Rightarrow$ } $h = 1.5$		
		Uses $h = 1.5$, $\theta_0 = 80$, $k = 0.1$ (condone $k = -0.1$) in a complete	M1	2 1h
		strategy to find a numerical expression for $\theta_1 =$	IVII	3.1b
		$\{\theta_0 = 80, k = 0.1 \Longrightarrow\} \left(\frac{d\theta}{dt}\right)_0 = -0.1(80 - 20) \{= -6\}$	M1	3.4
		$\left\{ \frac{\theta_1 - 80}{1.5} = -6 \implies \right\} \ \theta_1 = 80 + (1.5)(-6)$	M1	1.1b
		$\theta_1 = 71$	A1	1.1b
		$\{\theta_1 = 71 \Longrightarrow\} \left(\frac{d\theta}{dt}\right)_1 = -0.1("71"-20) \{=-5.1\}$	M1	1.1b
		$\theta_2 = 71 + (1.5)(-5.1) = 63.35(^{\circ}\text{C})$	A1	2.1
			(6)	
(b)		Decrease k to become a smaller positive value	B1	3.5c
			(1)	1
		Notes	(7	marks)
(a)		THE COLUMN TO TH		
M1:	See	See scheme		
M1:		is the model to evaluate the initial value of $\frac{d\theta}{dt}$ using $k = 0.1$ (condotates initial condition $\theta = 80$)	ne $k = -0$.	1)
		the initial condition $\theta_0 = 80$	0.1)	
M1:		lies the approximation formula with $\theta_0 = 80$, $k = 0.1$ (condone $k = 0.1$)	= -0.1) and	their h
A =		and a numerical expression for $\theta_1 = \dots$		
A1:		Is the approximation for θ at 1.5 minutes as 71		
M1:	Uses	Uses their 71 and $k = 0.1$ (condone $k = -0.1$) to find $\frac{d\theta}{dt}$		
A1:	Applies the approximation formula again to give 63.35 (°C) or awrt 63(°C)			
Note:	$h = 0.1 \Rightarrow \theta_1 = 79.4, \theta_2 = 78.806;$			
	$h = 1 \implies \theta_1 = 74, \ \theta_2 = 68.6;$			
	h =	$0.15 \Rightarrow \theta_1 = 79.1, \ \theta_2 = 78.2135$		
(b)				
B1:		scheme		
Note:		Allow B1 for "the value of k should satisfy $0 < k < 0.1$ "		
Note:		Condone "the value of k would need to be decreased" for B1		
Note:	Give	e B0 for "change k to become negative"		

Questi	on Scheme	Marks	AOs
3	$\frac{x}{x^2 - 2x - 3} \le \frac{1}{x + 3}$		
	$\frac{x(x+3) - (x^2 - 2x - 3)}{(x^2 - 2x - 3)(x+3)} \le 0$ or $x(x-3)(x+1)(x+3)^2 - (x-3)^2(x+1)^2(x+3) \le 0$ or $x(x^2 - 2x - 3)(x+3)^2 - (x^2 - 2x - 3)^2(x+3) \le 0$	M1	2.1
	$\frac{5x+3}{(x-3)(x+3)(x+1)} \{ \le 0 \} \text{or} (x-3)(x+1)(x+3)(5x+3) \{ \le 0 \}$	M1	1.1b
	(x-3)(x+3)(x+1)	A1	1.1b
	All three critical values $-3, 3, -1$	B1	1.1b
	Critical value $-\frac{3}{5}$	B1ft	1.1b
	${x \in \mathbb{R}: -3 < x < -1} \cup {x \in \mathbb{R}: -\frac{3}{5} \le x < 3}$	M1	2.2a
	$\begin{bmatrix} x \in \mathbb{R}^{n}, y \in \mathbb{R}^{$	A1	2.5
		(7)	marks)
	Notes	(1	mai Ks)
M1:	Gathers terms on one side and puts over a common denominator,		
	or multiplies by $(x+1)^2(x-3)^2(x+3)^2$ (or by the equivalent $(x^2-2x-$	$(3)^2(x+3)^2$)
3/11	and gathers terms onto one side	2)(n+1)(n+1)	2)
M1:	Expands and simplifies fully the numerator or takes out a factor of $(x - (or the equivalent (x^2 - 2x - 3)(x + 3)) and then simplifies fully their ren$		
		manning rac	2101
A1:	$\frac{5x+3}{(x-3)(x+3)(x+1)} \text{ or } (x-3)(x+1)(x+3)(5x+3)$		
B1:	Correct critical values of -3 , 3 and -1 which can be implied, e.g. from	their inea	nalities
B1ft:	Correct critical value of $-\frac{3}{5}$ which can be implied, e.g. from their inequality		
Note:	B1ft: You can follow through their fourth factor which is in the form $(ax + b)$, $a, b \ne 0$		
	to give C.V. = $-\frac{b}{a}$, if their fourth factor is not any of either $(x-3)$, $(x+3)$ or $(x+1)$		
M1:	Deduces that 2 "inside" inequalities are required with critical values in ascending order		
A1: Note:	Exactly 2 correct intervals, condoning omission of the union symbol Also accept, e.g.		
Tiote.	• $-3 < x < -1, -\frac{3}{5} \le x < 3$		
	• $(-3, -1), \left[-\frac{3}{5}, 3 \right]$ • $-1 > x > -3, \ 3 > x \ge -\frac{3}{5}$		
	5		

	Notes Continued	
Note:	Give 1 st A0 for $(x^2-2x-3)(x+3)(5x+3)$ { ≤ 0 } with no other working seen	
Note:	Give 1 st A1 (implied) for $(x^2 - 2x - 3)(x + 3)(5x + 3) \{ \le 0 \}$ with $x = 3$, $x = -1$ stated	
Note:	Give 1 st A0 for $\frac{5x+3}{(x^2-2x-3)(x+3)}$ { ≤ 0 } with no other working seen	
Note:	Give 1 st A1 (implied) for $\frac{5x+3}{(x^2-2x-3)(x+3)} \{ \le 0 \}$ with $x=3, x=-1$ stated	
Note:	Give 1 st A0 for $\frac{5x+3}{x^3+x^2-9x-9}$ { ≤ 0 } with no other working seen	
Note:	Give 1 st A1 (implied) for $\frac{5x+3}{x^3+x^2-9x-9} \{ \le 0 \}$ with $x=3, x=-1, x=-3$ stated	
Note:	Allow special case final M1 for any of	
	• $-3 < x < -1$ (condoning closed inequalities or a mixture of open and closed inequalities)	
	• $-\frac{3}{5} \le x < 3$ (condoning closed inequalities or a mixture of open and closed inequalities)	
	but do not allow M1 for any of	
	• e.g. $-3 < x < -1, -1 < x \le -\frac{3}{5}$ ("continuing inequalities")	
	• e.g. $-3 < x < 1, -\frac{3}{5} \le x < 3$ ("overlapping inequalities")	
	Alternative Method	
	$x(x-3)(x+1)(x+3)^{2} \le (x-3)^{2}(x+1)^{2}(x+3)$	
	$x^5 + 4x^4 - 6x^3 - 36x^2 - 27x \le x^5 - x^4 - 14x^3 + 6x^2 + 45x + 27$	
	$5x^4 + 8x^3 - 42x^2 - 72x - 27 \le 0$	
Note:	$5x^4 + 8x^3 - 42x^2 - 72x - 27 \le 0$ without any other working is M1M0A0	
Note:	$5x^4 + 8x^3 - 42x^2 - 72x - 27 \le 0 \implies x = -3, -1, 3 \text{ is M1M1A1B1}$	
Note:	$5x^4 + 8x^3 - 42x^2 - 72x - 27 \le 0 \implies x = -3, -1, 3, -\frac{3}{5} \text{ is M1M1A1B1B1}$	

Questi	ion	Scheme	Marks	AOs
4		A(12, 4, -1), B(10, 15, -3), C(10, 15, -3), D(2, 2, -6)		
(a)		$\overrightarrow{AB} = \begin{pmatrix} -2\\11\\-2 \end{pmatrix}, \ \overrightarrow{AC} = \begin{pmatrix} -7\\4\\6 \end{pmatrix}, \ \left\{ \overrightarrow{BC} = \begin{pmatrix} -5\\-7\\8 \end{pmatrix} \right\}$	M1	1.1b
		Area = $\frac{1}{2}\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 11 & -2 \\ -7 & 4 & 6 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 74 \\ 26 \\ 69 \end{vmatrix} = \frac{1}{2} \sqrt{(74)^2 + (26)^2 + (69)^2}$	M1	1.1b
		${= 52.23265} = 52.2 \text{ (mm}^2) (1 \text{ dp}) *$	A1*	2.2a
			(3)	
(b)		Finds appropriate vectors to find the volume of <i>ABCD</i> and makes a complete attempt to find the volume of the tetrahedron	M1	3.1a
		e.g. $\begin{vmatrix} -10 \\ -2 \\ -5 \end{vmatrix} \bullet \begin{pmatrix} 74 \\ 26 \\ 69 \end{vmatrix} = \dots \text{ or } \begin{vmatrix} -2 & 11 & -2 \\ -7 & 4 & 6 \\ -10 & -2 & -5 \end{vmatrix} = \dots$	M1	1.1b
		$= -740-52-345 $ or $ -2(-8)-11(95)-2(54) $ $\{=1137\}$	A1	1.1b
		$V = \frac{1137}{6} \text{ (mm}^3\text{)} \left\{ \text{or } \frac{379}{2} \text{ or } 189.5 \right\}$	A1	1.1b
		Density = $\frac{0.5}{189.5} \times 1000 \text{ (g cm}^{-3}\text{)}$	M1	2.1
		$\{=2.638522427\} = \text{awrt } 2.6 \text{ (g cm}^{-3})$	A1	1.1b
			(6)	
		Notes	(9	marks)
(a)				
M1:		es a correct method to find any 2 edges of triangle ABC	1 A D.C.	1 .
M1:		Complete process of taking the vector product between 2 edges of triangle ABC , applying Pythagoras and multiplying the result by 0.5		pplying
A1*:	Dec	duces the correct area of 52.2 (mm ²). Condone awrt 52.2		
Note:	Coı	Condone $\frac{1}{2} 74\mathbf{i} - 26\mathbf{j} + 69\mathbf{k} = \frac{1}{2} \sqrt{(74)^2 + (-26)^2 + (69)^2} = 52.2$, o.e. for M1M1A1		
Note:	As	As an alternative, $\frac{1}{2}\sqrt{129}\sqrt{101}\sin(66.2343) = 52.2 \text{ (1 dp)},$		
	who	where the angle has been found by applying the scalar product between \overrightarrow{AB} and \overrightarrow{AC}		
(b)				
M1:		See scheme		
M1: A1:		Uses appropriate vectors to in an attempt at the scalar triple product Correct numerical expression for the scalar triple product (allow +)		
A1:		Correct volume (in mm^3) (allow \pm)		
M1:		Correct volume (in mm 3) (allow \pm) A correct method for changing their units for their volume and for finding density		
A1:	Obtains the correct density in g cm ⁻³ . Allow awrt 2.6			
411.	00	turns the correct density in g cin . Throw awit 2.0		

	Notes Continued		
(b)			
Note:	Using any of \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} or \overrightarrow{OD} in their scalar triple product is M0M0A0A0		
Note:	Allow M1M1A0A0 for		
	$ \left V = \frac{1}{6} \left \begin{pmatrix} -10 \\ -2 \\ -5 \end{pmatrix} \bullet \begin{pmatrix} 74 \\ 26 \\ 69 \end{pmatrix} \right = \frac{1}{6} \left -740\mathbf{i} - 52\mathbf{j} - 345\mathbf{k} \right = \frac{1}{6} \sqrt{(-740)^2 + (-52)^2 + (-345)^2} $		
	$= \frac{1}{6}(818.125296) = 135.354216$		
Note:	Some vector product calculations for reference:		
	$\left \overrightarrow{AD} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC} \right) \right = \begin{vmatrix} -10 & -2 & -5 \\ -2 & 11 & -2 \\ -7 & 4 & 6 \end{vmatrix} = \begin{vmatrix} -10 \\ -2 \\ -5 \end{vmatrix} \bullet \begin{pmatrix} 74 \\ 26 \\ 69 \end{vmatrix} = -740 - 52 - 345 = 1137$		
	$\left \overrightarrow{AB} \cdot \left(\overrightarrow{AC} \times \overrightarrow{AD} \right) \right = \begin{vmatrix} -2 & 11 & -2 \\ -7 & 4 & 6 \\ -10 & -2 & -5 \end{vmatrix} = \begin{vmatrix} -2 & 11 & -2 \\ 11 & -2 & -5 \\ -2 & -5 & -5 \end{vmatrix} = \begin{vmatrix} -2 & -8 & -95 \\ -95 & 54 \end{vmatrix} = 16 - 1045 - 108 = 1137$		
	$\left \overrightarrow{AC} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AD} \right) \right = \begin{vmatrix} -7 & 4 & 6 \\ -2 & 11 & -2 \\ -10 & -2 & -5 \end{vmatrix} = \begin{vmatrix} -7 \\ 4 \\ 6 \end{vmatrix} \bullet \begin{pmatrix} -59 \\ 10 \\ 114 \end{vmatrix} = 413 + 40 + 684 = 1137$		
Note:	Some candidates apply $\overrightarrow{AB} \times \overrightarrow{AC}$ incorrectly to give $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 11 & -2 \\ -7 & 4 & 6 \end{vmatrix} = 74\mathbf{i} - 26\mathbf{j} + 69\mathbf{k}$		
	This leads to an incorrect $ \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC}) = \begin{vmatrix} -10 \\ -2 \\ -5 \end{vmatrix} \cdot \begin{pmatrix} 74 \\ -26 \\ 69 \end{vmatrix} = -740 + 52 - 345 = 1033$		

Question	Scheme	Marks	AOs
5	$H: xy = c^2, c \neq 0; \ P\left(cp, \frac{c}{p}\right), \ p \neq 0, \text{ lies on } H$		
(a)	Either $y = \frac{c^2}{x} = c^2 x^{-1} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2} \text{ or } -\frac{c^2}{x^2}$ or $xy = c^2 \Rightarrow x \frac{dy}{dx} + y = 0$		
	or $x = ct$, $y = \frac{c}{t}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{c}{t^2}\right)\left(\frac{1}{c}\right)$	M1	2.1
	and so, at $P\left(cp, \frac{c}{p}\right)$, $m_T = -\frac{1}{p^2}$		
	So, $m_N = p^2$	A1	2.2a
	$y - \frac{c}{p} = "p^2"(x - cp)$ or $\frac{c}{n} = "p^2"(cp) + b \implies y = "p^2"x + \text{their } b$	M1	1.1b
	p		
	correct algebra leading to $p^3x - py + c(1 - p^4) = 0$ *	A1*	2.1
(b)	2 2	(4)	
	$y = \frac{c^2}{x} \Rightarrow p^3 x - p \frac{c^2}{x} + c(1 - p^4) = 0$ or $x = \frac{c^2}{y} \Rightarrow p^3 \frac{c^2}{y} - py + c(1 - p^4) = 0$	M1	3.1a
	$p^{3}x^{2} + c(1-p^{4})x - c^{2}p = 0 \text{ or } py^{2} - c(1-p^{4})y - c^{2}p^{3} = 0$	A1	1.1b
	$(x-cp)(p^3x+c) = 0 \implies x = \dots$ or $\left(y-\frac{c}{p}\right)\left(yp+cp^4\right) = 0 \implies y = \dots$	M1	3.1a
	$x = -\frac{c}{p^3}$ and $y = -cp^3$ or $\{Q\}\left(-\frac{c}{p^3}, -cp^3\right)$	A1	1.1b
	Midpoint is $\left(\frac{1}{2}\left(cp-\frac{c}{p^3}\right),\frac{1}{2}\left(\frac{c}{p}-cp^3\right)\right)$	M1	1.1b
	With the second is $\left(\frac{1}{2}\left(\frac{cp-p^3}{p^3}\right), \frac{1}{2}\left(\frac{p-cp}{p}\right)\right)$	A1	1.1b
		(6)	
(b) Alt 1	Let Q be $\left(cq, \frac{c}{q}\right)$, so $p^3cq - p\frac{c}{q} + c(1-p^4) = 0$ $p^3cq^2 - pc + c(1-p^4)q = 0 \implies p^3q^2 + (1-p^4)q - p = 0$	M1	3.1a
		A1	1.1b
	$(q-p)(p^3q+1)=0 \implies q=\dots$	M1	3.1a
	${Q}\left\{-\frac{c}{p^3}, -cp^3\right\}$ or $x = -\frac{c}{p^3}$ and $y = -cp^3$	A1	1.1b
		(10	marks)

	Notes
(a)	
M1:	Starts the process of establishing the gradient of the normal by differentiating $xy = c^2$ • to give $\frac{dy}{dx} = \pm k x^{-2}$; $k \ne 0$, or
	• by the product rule to give $\pm x \frac{dy}{dx} \pm y$, or
	• by parametric differentiation to give $\left(\text{their } \frac{dy}{dt}\right) \times \frac{1}{\left(\text{their } \frac{dx}{dt}\right)}$, condoning $t \equiv p$
	and attempt to use $P\left(cp, \frac{c}{p}\right)$ to write down the gradient of the tangent to the curve
	in terms of p
A1:	Deduces the correct normal gradient p^2 from their tangent gradient which is found using calculus
M1:	Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is found by
	using calculus. Note: m_N must be a function of p for this mark
A1*:	Obtains $p^3x - py + c(1 - p^4) = 0$, by correct solution only
(b)	
M1:	Substitutes $y = \frac{c^2}{x}$ or $x = \frac{c^2}{y}$ into the printed equation to obtain an equation in
	x, c and p only or in y , c and p only
A1:	Obtains a 3TQ equation in x or a 3TQ equation in y
Note:	E.g. $p^3x^2 + cx - cp^4x = c^2p$ or $py^2 = cy - cp^4y + c^2p^3$ are acceptable for the 1 st A mark
M1:	Recognises that one solution of the quadratic equation is already known and uses a correct factorisation method of solving a 3TQ to give either $x =$ or $y =$
	Alternatively applies a correct quadratic formula method for solving a 3TQ
A1:	Correct coordinates for Q , which can be simplified or un-simplified
	Allow $x = -\frac{c}{p^3}$ and $y = -cp^3$
M1:	Uses $\left(cp, \frac{c}{p}\right)$ and their (x_Q, y_Q) and applies $\left(\frac{cp + \text{their } x_Q}{2}, \frac{\frac{c}{p} + \text{their } y_Q}{2}\right)$
	to give (x_M, y_M) , where x_M and y_M are both in terms of c and p only
A1:	Correct coordinates $\left(\frac{1}{2}\left(cp - \frac{c}{p^3}\right), \frac{1}{2}\left(\frac{c}{p} - cp^3\right)\right)$. Condone $\left(\frac{cp - \frac{c}{p^3}}{2}, \frac{\frac{c}{p} - cp^3}{2}\right)$
Note:	Condone $x = \frac{1}{2} \left(cp - \frac{c}{p^3} \right)$ and $y = \frac{1}{2} \left(\frac{c}{p} - cp^3 \right)$ for the final A mark
Note:	You can apply isw after correctly stated coordinates for the midpoint of P and Q

	Notes Continued		
(b)			
Alt 1	(for the first 4 marks)		
M1:	Substitutes $x = cq$ and $y = \frac{c}{q}$ into the printed equation to obtain an equation in		
	only p , c and q		
A1:	Eliminates c and obtains a correct quadratic equation in q		
Note:	E.g. $p^3q^2 + q - p^4q = p$ is acceptable for the 1 st A mark		
M1:	Recognises that one solution of the quadratic equation is already known and uses a		
	correct factorisation method of solving a 3TQ to give $q =$		
	Alternatively applies a correct quadratic formula method for solving a 3TQ in q		
A1:	Correct coordinates for Q , which can be simplified or un-simplified		
	Allow $x = -\frac{c}{p^3}$ and $y = -cp^3$		