MODEL ANSWERS

Please check the examination details below before entering your candidate information			
Candidate surname	Other	names	
	Cantus Numahan	Canadidata Numban	
Pearson Edexcel	Centre Number	Candidate Number	
Level 3 GCE			
Thursday 14 May 2020			
		OFMO/21	
Afternoon	Paper Referer	nce 8FM0/21	
Further Mathematics Advanced Subsidiary Further Mathematics options 21: Further Pure Mathematics 1 (Part of options A, B, C and D)			
You must have: Mathematical Formulae and Statistical Tables (Green), calculator			

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 40. There are 5 questions.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2y^2 - x - 1$$

where
$$\frac{dy}{dx} = 3$$
 and $y = 0$ at $x = 0$

Use the approximations

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_n \approx \frac{(y_{n+1} - 2y_n + y_{n-1})}{h^2} \quad \text{and} \quad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_n \approx \frac{(y_{n+1} - y_{n-1})}{2h}$$

with h = 0.1 to find an estimate for the value of y at x = 0.2

(7)

Using approximations given: $(\frac{dy}{dx})_0 = \frac{y_1 - y_2}{0.2} \approx 3$ to find y @ next step

$$\left(\frac{d^2y}{dx^2}\right) \sim \frac{(y_1-2y_0+y_{-1})}{h^2} \sim -1 \Rightarrow \frac{y_1-2(0)+y_{-1}}{(0\cdot 1)^2} \sim -1$$

solve simultaneous

24,~ 0.6-0.01

@ X=0.1

$$y_1 \approx \frac{0.59}{2} = 0.295$$

 $y_1 \sim \frac{0.59}{3} = 0.295$

Question 1 continued

$$\frac{d^2y}{dx^2} = 2y^2 - x - 1 \Rightarrow \frac{d^2y}{dx^2} \Big|_{x=0.1} = 2(0.295)^2 - 0.1 - 1 = -0.92595$$

plug back in approx

$$\left(\frac{d^2y}{dx^2}\right)_1 \sim \frac{(y_2 - 2y_1 + y_0)}{h^2} \Rightarrow \frac{y_2 - 2(0.295) + 0}{0.01} \sim -0.92595$$

$$\therefore y_2 \simeq -0.0092595 + 2(0.295) = 0.5807...$$
= 0.581 (3sf)

Question 1 continued	

Question 1 continued	
(Total fo	r Question 1 is 7 marks)

2. Use algebra to determine the values of x for which

$$\frac{x+1}{2x^2+5x-3} > \frac{x}{4x^2-1}$$

(5)

first, we factorise the denominators so we can identify common factors & subtract the fractions

$$\frac{x+1}{(2X-1)(X+3)} > \frac{x}{(2X+1)(2X-1)}$$

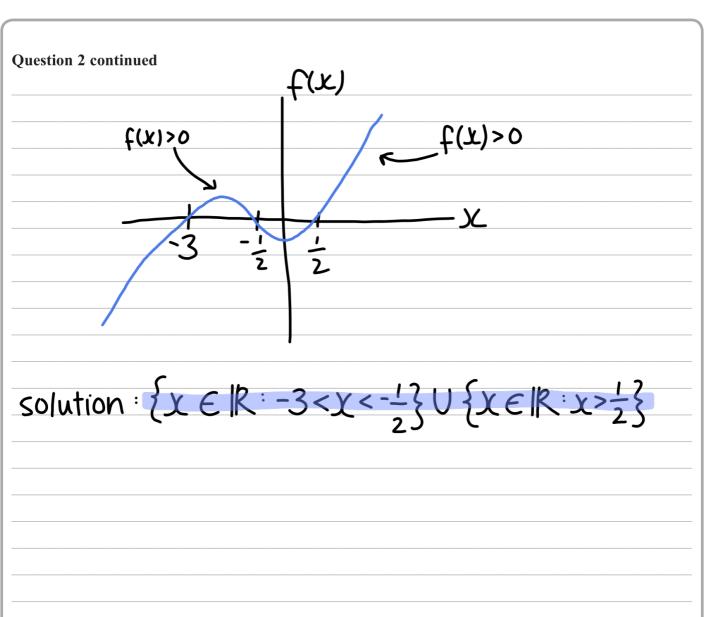
$$\frac{(x+1)(2x+1)-x(x+3)}{(2x+1)(2x-1)(x+3)} > 0$$

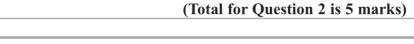
$$\frac{2x^2+3x+1-(x^2+3x)}{(2x+1)(2x-1)(x+3)}>0$$

$$\frac{X^{2}+1}{(2X+1)(2X-1)(X+3)} > 0$$

for XEIR, X2+1 is always >0 → we need denominator

to be >0 for inequality to hold


$$(2x+1)(2x-1)(x+3)>0$$


sketch polynomial:

when $x \rightarrow -\infty$, poly. is 3-ve terms multiplied $\Rightarrow f(x) \rightarrow -\infty$

when $X \rightarrow +\infty$, poly is 3+ve terms multiplied $\Rightarrow f(X) \rightarrow +\infty$

3. (i) Use the substitution $t = \tan\left(\frac{x}{2}\right)$ to prove that

$$\cot x + \tan\left(\frac{x}{2}\right) = \csc x \quad x \neq n\pi, \ n \in \mathbb{Z}$$
 (2)

(ii)

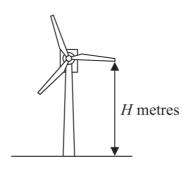


Figure 1

An engineer models the vertical height above the ground of the tip of one blade of a wind turbine, shown in Figure 1. The ground is assumed to be horizontal.

The vertical height of the tip of the blade above the ground, H metres, at time x seconds after the wind turbine has reached its constant operating speed, is modelled by the equation

$$H = 90 - 30\cos(120x)^{\circ} - 40\sin(120x)^{\circ}$$
 (I)

(a) Show that H = 60 when x = 0

(1)

Using the substitution $t = \tan(60x)^{\circ}$

(b) show that equation (I) can be rewritten as

$$H = \frac{120t^2 - 80t + 60}{1 + t^2} \tag{3}$$

(c) Hence find, according to the model, the value of *x* when the tip of the blade is 100 m above the ground for the first time after the wind turbine has reached its constant operating speed.

$$i. t = \tan(\frac{x}{2})$$

$$\frac{\tan x = 2\tan(\frac{x}{2})}{1-\tan^2(\frac{x}{2})} \Rightarrow \cot x = \frac{1-t^2}{2t}$$

Question 3 continued

SOLHS =
$$\frac{1-t^2}{2t} + t = \frac{1-t^2}{2t} + \frac{2t^2}{2t}$$

= $\frac{1+t^2}{2t}$

standard result

= $\frac{1}{\sin x}$

= $\frac{1}{\cos x}$

ii.a)
$$x=0 \Rightarrow H=90-30\cos(0)-40\sin(0)$$

$$= 90 - 30$$

b) if
$$t = tan(\frac{0}{2})$$
, then $cos\theta = \frac{1-t^2}{1+t^2} l sin\theta = \frac{2t}{1+t^2}$

$$0 = 120 \times \Rightarrow H = 90 - 30 \left(\frac{1 - t^2}{1 + t^2}\right) - 40 \left(\frac{2t}{1 + t^2}\right)$$

$$= 90(1+t^2)-30+30t^2-80t$$

$$(1+t^2)$$

$$= \frac{120t^2 - 80t + 60}{(1+t^2)}$$

C)
$$H = 100 = 120t^2 - 80t + 60$$

$$\Rightarrow$$
 |20t²-80t+60=|00+|00t²

$$20t^{2}-80t-40=0 \Rightarrow 2t^{2}-8t-4=0 \Rightarrow t^{2}-4t-2=0$$
(dividing both sides by 10)
(auxiding both

Question 3 continued

$$t = 4 \pm \sqrt{4^2 + 4(2)} = 2 \pm \sqrt{6}$$

SO
$$60x = tan^{-1}(2+16)$$
 or $60x = tan^{-1}(2-16)$

x is positive (time) >> need positive root

tan- (2+16)=77.334 (remember to use degrees)

$$\therefore \chi = \frac{77.334}{60} = 1.29 (3 s.f.)$$

Question 3 continued
(Total for Question 2 is 11 mayles)
(Total for Question 3 is 11 marks)

4.

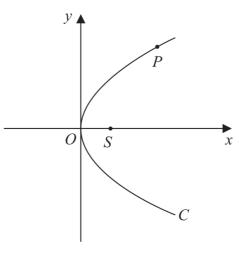


Figure 2

Figure 2 shows a sketch of the parabola C with equation $y^2 = 4ax$, where a is a positive constant. The point S is the focus of C and the point $P(ap^2, 2ap)$ lies on C where p > 0

(a) Write down the coordinates of *S*.

(1)

(b) Write down the length of SP in terms of a and p.

(1)

The point $Q(aq^2, 2aq)$, where $p \neq q$, also lies on C. The point M is the midpoint of PQ.

Given that pq = -1

(c) prove that, as P varies, the locus of M has equation

$$y^2 = 2a(x - a)$$

- a) (a,0) for a curve of form $y^2 + ax$, its focus is $e^{(5)}x = a$
- b) focus-directrix relation: SP = PX, where $X(-\alpha, y \text{ coord of } P)$

P has x-coord
$$ap^2 \rightarrow PX = pa^2 + a$$

$$SP = ap^2 + a$$

c) M is the midpoint of PQ so it has coordinates

$$\left(\frac{ap^2+aq^2}{2},\frac{2ap+2aq}{2}\right)$$

Question 4 continued

so
$$y_m = a(p+q) \Rightarrow y_m^2 = a^2(p^2 + 2pq + q^2)$$

we are told
$$pq=-1 \Rightarrow y^2=a^2(p^2-2+q^2)$$

sub our x-value for M into the equation given:

equal

$$2\alpha(x-\alpha)=2\alpha(\frac{1}{2}\alpha p^2+\frac{1}{2}\alpha q^2-\alpha)=\alpha^2(p^2+q^2-2)$$

$$y^2 = 2a(x-a)$$
 describes M

Question 4 continued

14

Question 4 continued	
	0 4 4 5
(Total for	Question 4 is 7 marks)

5.

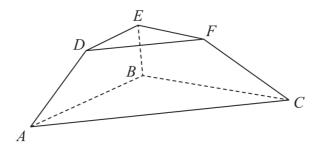


Figure 3

Figure 3 shows a solid display stand with parallel triangular faces *ABC* and *DEF*. Triangle *DEF* is similar to triangle *ABC*.

With respect to a fixed origin O, the points A, B and C have coordinates (3, -3, 1), (-5, 3, 3) and (1, 7, 5) respectively and the points D, E and F have coordinates (2, -1, 8), (-2, 2, 9) and (1, 4, 10) respectively. The units are in centimetres.

(a) Show that the area of the triangular face *DEF* is $\frac{1}{2}\sqrt{339}$ cm²

(3)

(b) Find, in cm³, the exact volume of the display stand.

a) area =
$$\frac{1}{2} |b \times c| \Rightarrow we need \vec{DE} & \vec{DF}$$

$$\stackrel{+}{DE} = \stackrel{-2}{2} = \stackrel{-2}{2} = \stackrel{-4}{3}$$

$$\stackrel{+}{9} = \stackrel{-4}{3} = \stackrel{-4}{3}$$

$$\begin{array}{ccc}
\pm \overrightarrow{DF} = \pm \begin{pmatrix} 1 \\ 4 \\ 10 \end{pmatrix} \mp \begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix}$$

area =
$$\frac{1}{2} | \overrightarrow{DE} \times \overrightarrow{DF} | = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ -1 & \underline{5} & \underline{2} \end{vmatrix} \times \frac{1}{2} = \frac{1}{2} [\underline{i} (3 \times 2 - 1 \times 5)]$$

Using the 'cross product'
$$= \frac{1}{2} \begin{pmatrix} 1 \\ -4x5 - 3x - 1 \end{pmatrix}$$

Question 5 continued

$$= \frac{1}{2} \sqrt{1^2 + 7^2 + 17^2}$$
$$= \frac{1}{2} \sqrt{339 \text{ (cm}^2)}$$

b) extend top of volume to give a tetrahedron

use similar triangles:

$$DF = \sqrt{1^2 + 5^2 + 2^2}$$

$$= \sqrt{30}$$

$$\overrightarrow{AC} = \begin{pmatrix} 1 \\ 7 \\ 5 \end{pmatrix} - \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 10 \\ 4 \end{pmatrix}$$

$$\Rightarrow AC = \sqrt{2^2 + 10^2 + 4^2}$$

= $\sqrt{120}$

$$\frac{AC}{DF}$$
 = 2 = Scale factor between triangles TDF & TAC

$$\overrightarrow{AD} = \begin{pmatrix} 2 \\ -1 \\ 8 \end{pmatrix} - \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 7 \end{pmatrix}$$

$$D + \overrightarrow{AD} = \begin{pmatrix} 1 \\ 1 \\ 15 \end{pmatrix} \Rightarrow T(1, 1, 15)$$

Question 5 continued

$$\overrightarrow{AT} = \begin{pmatrix} 1 \\ 1 \\ 15 \end{pmatrix} - \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 14 \end{pmatrix} \qquad \overrightarrow{BT} = \begin{pmatrix} 1 \\ 1 \\ 15 \end{pmatrix} - \begin{pmatrix} -5 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \\ 12 \end{pmatrix}$$

$$\overrightarrow{CT} = \begin{pmatrix} 1 \\ 1 \\ 15 \end{pmatrix} - \begin{pmatrix} 1 \\ 7 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \\ 10 \end{pmatrix}$$

$$\forall = \frac{1}{6} | a \cdot (b \times c) |$$

V of tetrahedron =
$$\frac{1}{6} \left| -2(52) - 4(60) + 14(-36) \right|$$

linear scale factor is 2 >> Volume 5.f. is 8

TEDF volume is & volume of whole tetrahedron

$$\therefore \text{ Volume of stand} = \frac{7}{8} \times \frac{424}{3} = \frac{371 \text{ cm}^3}{3}$$

Question 5 continued

Question 5 continued	
	(Total for Question 5 is 10 marks)
TOTAL FOR FURTHER PURE N	