Paper 1: Core Pure Mathematics 1 Mark Scheme | Question | Scheme | Marks | AOs | |----------|--|-------|--------| | 1 | $\frac{1}{(r+1)(r+3)} \equiv \frac{A}{(r+1)} + \frac{B}{(r+3)} \Rightarrow A = \dots, B = \dots$ | M1 | 3.1a | | | $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{1}{2 \times 2} - \frac{1}{2 \times 4} + \frac{1}{2 \times 3} - \frac{1}{2 \times 5} + \dots + \frac{1}{2n} - \frac{1}{2(n+2)} + \frac{1}{2(n+1)} - \frac{1}{2(n+3)}$ | M1 | 2.1 | | | $= \frac{1}{4} + \frac{1}{6} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}$ | A1 | 2.2a | | | $=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{12(n+2)(n+3)}$ | M1 | 1.1b | | | $=\frac{n(5n+13)}{12(n+2)(n+3)}$ | A1 | 1.1b | | | | (5) | | | | Alternative by induction:
$n=1 \Rightarrow \frac{1}{8} = \frac{a+b}{12\times 3\times 4}, n=2 \Rightarrow \frac{1}{8} + \frac{1}{15} = \frac{2(2a+b)}{12\times 4\times 5}$ $a+b=18, 2a+b=23 \Rightarrow a=, b=$ | M1 | 3.1a | | | Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)}$ | | | | | $\sum_{r=1}^{k+1} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)}$ | M1 | 2.1 | | | $\frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)} = \frac{k(5k+13)(k+4)+12(k+3)}{12(k+2)(k+3)(k+4)}$ | A1 | 2.2a | | | $= \frac{5k^3 + 33k^2 + 52k + 12k + 36}{12(k+2)(k+3)(k+4)} = \frac{(k+1)(k+2)(5k+18)}{12(k+2)(k+3)(k+4)}$ | M1 | 1.1b | | | $= \frac{(\underline{k+1})(5(\underline{k+1})+13)}{12(\underline{k+1}+2)(\underline{k+1}+3)}$ So true for $n = k+1$ $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}$ | A1 | 1.1b | | | | (5) | | | | | (5 n | narks) | ## Question 1 notes: #### **Main Scheme** M1: Valid attempt at partial fractions M1: Starts the process of differences to identify the relevant fractions at the start and end **A1:** Correct fractions that do not cancel **M1:** Attempt common denominator A1: Correct answer ## **Alternative by Induction:** **M1:** Uses n = 1 and n = 2 to identify values for a and b M1: Starts the induction process by adding the $(k+1)^{th}$ term to the sum of k terms **A1:** Correct single fraction M1: Attempt to factorise the numeratorA1: Correct answer and conclusion | Question | Scheme | Marks | AOs | |----------|--|-------|------| | 2 | When $n = 1$, $2^{3n+1} + 3(5^{2n+1}) = 16 + 375 = 391$
$391 = 17 \times 23$ so the statement is true for $n = 1$ | B1 | 2.2a | | | Assume true for $n = k$ so $2^{3k+1} + 3(5^{2k+1})$ is divisible by 17 | M1 | 2.4 | | | $f(k+1)-f(k) = 2^{3k+4} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})$ | M1 | 2.1 | | | $= 7 \times 2^{3k+1} + 7 \times 3(5^{2k+1}) + 17 \times 3(5^{2k+1})$ | | | | | $=7f(k)+17\times3(5^{2k+1})$ | A1 | 1.1b | | | $f(k+1) = 8f(k) + 17 \times 3(5^{2k+1})$ | A1 | 1.1b | | | If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n | A1 | 2.4 | | | | (6) | | (6 marks) ## Notes: **B1:** Shows the statement is true for n = 1 **M1:** Assumes the statement is true for n = k **M1:** Attempts f(k+1) - f(k) **A1:** Correct expression in terms of f(k) **A1:** Correct expression in terms of f(k) **A1:** Obtains a correct expression for f(k+1) **A1:** Correct complete conclusion | Question | Scheme | Marks | AOs | |----------|---|---------------------------------|------| | 3 | z = 3 - 2i is also a root | B1 | 1.2 | | | $(z - (3 + 2i))(z - (3 - 2i)) = \dots$ or Sum of roots = 6, Product of roots = 13 \Rightarrow | M1 | 3.1a | | | $=z^2-6z+13$ | A1 | 1.1b | | | $(z^4 + az^3 + 6z^2 + bz + 65) = (z^2 - 6z + 13)(z^2 + cz + 5) \Rightarrow c = \dots$ | M1 | 3.1a | | | $z^2 + 2z + 5 = 0$ | A1 | 1.1b | | | $z^2 + 2z + 5 = 0 \Rightarrow z = \dots$ | M1 | 1.1a | | | $z = -1 \pm 2i$ | A1 | 1.1b | | | (-1, 2) (3, 2) | B1 $3 \pm 2i$ Plotted correctly | 1.1b | | | (-1, -2) Re | B1ft -1 ± 2i Plotted correctly | 1.1b | ## (9 marks) #### **Notes:** **B1:** Identifies the complex conjugate as another root M1: Uses the conjugate pair and a correct method to find a quadratic factor **A1:** Correct quadratic M1: Uses the given quartic and their quadratic to identify the value of c A1: Correct 3TQ M1: Solves their second quadratic A1: Correct second conjugate pair **B1:** First conjugate pair plotted correctly and labelled **B1ft:** Second conjugate pair plotted correctly and labelled (Follow through their second conjugate pair) | Question | Scheme | Marks | AOs | |----------|---|-------|------| | 4 | $4 + \cos 2\theta = \frac{9}{2} \Rightarrow \theta = \dots$ | M1 | 3.1a | | | $\theta = \frac{\pi}{6}$ | A1 | 1.1b | | | $\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta$ | M1 | 3.1a | | | $\cos^2 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Rightarrow A = \frac{1}{2}\int \left(16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta\right)d\theta$ | M1 | 3.1a | | | $=\frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right]$ | A1 | 1.1b | | | Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2} \left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0) \right]$ | M1 | 1.1b | | | Area of triangle = $\frac{1}{2} (r \cos \theta) (r \sin \theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$ | M1 | 3.1a | | | Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$ | M1 | 1.1b | | | $= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, \ q = -\frac{3}{2} \right)$ | A1 | 1.1b | (9 marks) ## Notes: M1: Realises the angle for A is required and attempts to find it A1: Correct angle M1: Uses a correct area formula and squares r to achieve a 3TQ integrand in $\cos 2\theta$ **M1:** Use of the correct double angle identity on the integrand to achieve a suitable form for integration A1: Correct integration M1: Correct use of limits M1: Identifies the need to subtract the area of a triangle and so finds the area of the triangle M1: Complete method for the area of R A1: Correct final answer | Question | Scheme | Marks | AOs | |----------|---|-------|------| | 5(a) | Pond contains $1000 + 5t$ litres after t days | M1 | 3.3 | | | If x is the amount of pollutant in the pond after t days | | | | | Rate of pollutant out = $20 \times \frac{x}{1000 + 5t}$ g per day | M1 | 3.3 | | | Rate of pollutant in = 25×2 g = 50 g per day | B1 | 2.2a | | | $\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t} *$ | A1* | 1.1b | | | | (4) | | | (b) | $I = e^{\int \frac{4}{200+t} dt} = (200+t)^4 \Rightarrow x(200+t)^4 = \int 50(200+t)^4 dt$ | M1 | 3.1b | | | $x(200+t)^4 = 10(200+t)^5 + c$ | A1 | 1.1b | | | $x = 0, \ t = 0 \Rightarrow c = -3.2 \times 10^{12}$ | M1 | 3.4 | | | $t = 8 \Rightarrow x = 10(200 + 8) - \frac{3.2 \times 10^{12}}{(200 + 8)^4}$ | M1 | 1.1b | | | = 370g | A1 | 2.2b | | | | (5) | | | (c) | e.g. The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry The rate of leaking could be made to vary with the volume of water in the pond | B1 | 3.5c | | | | (1) | | (10 marks) ## Notes: (a) M1: Forms an expression of the form 1000 + kt for the volume of water in the pond at time t M1: Expresses the amount of pollutant out in terms of x and t **B1:** Correct interpretation for pollutant entering the pond A1*: Puts all the components together to form the correct differential equation (b) **M1:** Uses the model to find the integrating factor and attempts solution of their differential equation **A1:** Correct solution M1: Interprets the initial conditions to find the constant of integration M1: Uses their solution to the problem to find the amount of pollutant after 8 days **A1:** Correct number of grams (c) **B1:** Suggests a suitable refinement to the model | Question | Scheme | Marks | AOs | |----------|--|-------|------| | 6(a) | $f(x) = \frac{x+2}{x^2+9} = \frac{x}{x^2+9} + \frac{2}{x^2+9}$ | B1 | 3.1a | | | $\int \frac{x}{x^2 + 9} dx = k \ln\left(x^2 + 9\right) (+c)$ | M1 | 1.1b | | | $\int \frac{2}{x^2 + 9} \mathrm{d}x = k \arctan\left(\frac{x}{3}\right) (+c)$ | M1 | 1.1b | | | $\int \frac{x+2}{x^2+9} dx = \frac{1}{2} \ln(x^2+9) + \frac{2}{3} \arctan\left(\frac{x}{3}\right) + c$ | A1 | 1.1b | | | | (4) | | | (b) | $\int_{0}^{3} f(x) dx = \left[\frac{1}{2} \ln(x^{2} + 9) + \frac{2}{3} \arctan\left(\frac{x}{3}\right) \right]_{0}^{3}$ $= \frac{1}{2} \ln 18 + \frac{2}{3} \arctan\left(\frac{3}{3}\right) - \left(\frac{1}{2} \ln 9 + \frac{2}{3} \arctan(0)\right)$ $= \frac{1}{2} \ln \frac{18}{9} + \frac{2}{3} \arctan\left(\frac{3}{3}\right)$ | M1 | 1.1b | | | Mean value = $\frac{1}{3-0} \left(\frac{1}{2} \ln 2 + \frac{\pi}{6} \right)$ | M1 | 2.1 | | | $\frac{1}{6}\ln 2 + \frac{1}{18}\pi^*$ | A1* | 2.2a | | | | (3) | | | (c) | $\frac{1}{6}\ln 2 + \frac{1}{18}\pi + \ln k$ | M1 | 2.2a | | | $\frac{1}{6}\ln 2k^6 + \frac{1}{18}\pi$ | A1 | 1.1b | | | | (2) | | (9 marks) # Notes: (a) **B1:** Splits the fraction into two correct separate expressions M1: Recognises the required form for the first integration M1: Recognises the required form for the second integration **A1:** Both expressions integrated correctly and added together with constant of integration included **(b)** M1: Uses limits correctly and combines logarithmic terms M1: Correctly applies the method for the mean value for their integration **A1*:** Correct work leading to the given answer (c) M1: Realises that the effect of the transformation is to increase the mean value by $\ln k$ **A1:** Combines ln's correctly to obtain the correct expression | Question | Scheme | Marks | AOs | |----------|---|-------|------| | 7(a) | $x = \cos\theta + \sin\theta\cos\theta = -y\cos\theta$ | M1 | 2.1 | | | $\sin\theta = -y - 1$ | M1 | 2.1 | | | $\left(\frac{x}{-y}\right)^2 = 1 - \left(-y - 1\right)^2$ | M1 | 2.1 | | | $x^2 = -(y^4 + 2y^3)^*$ | A1* | 1.1b | | | | (4) | | | (b) | $V = \pi \int x^2 dy = \pi \int -(y^4 + 2y^3) dy$ | M1 | 3.4 | | | $=\pi\left[-\left(\frac{y^5}{5}+\frac{y^4}{2}\right)\right]$ | A1 | 1.1b | | | $= -\pi \left[\left(\frac{(0)^5}{5} + \frac{(0)^4}{2} \right) - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2} \right) \right]$ | M1 | 3.4 | | | $=1.6\pi\mathrm{cm^3}\ \mathbf{or}\ \mathrm{awrt}\ 5.03\ \mathrm{cm^3}$ | A1 | 1.1b | | | | (4) | | (8 marks) ## Notes: (a) **M1:** Obtains x in terms of y and $\cos \theta$ **M1:** Obtains an equation connecting y and $\sin \theta$ M1: Uses Pythagoras to obtain an equation in x and y only **A1*:** Obtains printed answer (b) M1: Uses the correct volume of revolution formula with the given expression **A1:** Correct integration M1: Correct use of correct limits A1: Correct volume | Question | Scheme | Marks | AOs | |----------|--|-------|------| | 8 | $2+4\lambda-2(4-2\lambda)-6+\lambda=6 \Rightarrow \lambda=$ | M1 | 1.1b | | | $\lambda = 2 \Rightarrow$ Required point is $(2+2(4), 4+2(-2), -6+2(1))$
(10, 0, -4) | A1 | 1.1b | | | $2+t-2(4-2t)-6+t=6 \Rightarrow t=$ | M1 | 3.1a | | | t = 3 so reflection of $(2,4,-6)$ is $(2+6(1),4+6(-2),-6+6(1))$ | M1 | 3.1a | | | (8, -8, 0) | A1 | 1.1b | | | | M1 | 3.1a | | | $\mathbf{r} = \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} + k \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \text{or equivalent e.g.} \left(\mathbf{r} - \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} \right) \times \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = 0$ | A1 | 2.5 | | | | (7) | | (7 marks) #### **Notes:** M1: Substitutes the parametric equation of the line into the equation of the plane and solves for λ A1: Obtains the correct coordinates of the intersection of the line and the plane M1: Substitutes the parametric form of the line perpendicular to the plane passing through (2, 4, -6) into the equation of the plane to find t M1: Find the reflection of (2, 4, -6) in the plane **A1:** Correct coordinates M1: Determines the direction of l by subtracting the appropriate vectors **A1:** Correct vector equation using the correct notation | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 9(a)(i) | Weight = mass × g \Rightarrow $m = \frac{30000}{g} = 3000$
But mass is in thousands of kg, so $m = 3$ | M1 | 3.3 | | (ii) | $\frac{dx}{dt} = 40\cos t + 20\sin t, \ \frac{d^2x}{dt^2} = -40\sin t + 20\cos t$ | M1 | 1.1b | | | $3(-40\sin t + 20\cos t) + 4(40\cos t + 20\sin t) + 40\sin t - 20\cos t = \dots$ | M1 | 1.1b | | | = 200 cos t so PI is $x = 40 \sin t - 20 \cos t$ | A1* | 2.1 | | | or | | | | | Let $x = a \cos t + b \sin t$
$\frac{dx}{dt} = -a \sin t + b \cos t, \frac{d^2x}{dt^2} = -a \cos t - b \sin t$ | M1 | 1.1b | | | $4b-2a = 200, -2b-4a = 0 \Rightarrow a =, b =$ | M1 | 2.1 | | | $x = 40\sin t - 20\cos t$ | A1* | 1.1b | | (iii) | $3\lambda^2 + 4\lambda + 1 = 0 \Rightarrow \lambda = -1, -\frac{1}{3}$ | M1 | 1.1b | | | $x = Ae^{-t} + Be^{-\frac{1}{3}t}$ | A1 | 1.1b | | | x = PI + CF | M1 | 1.1b | | | $x = Ae^{-t} + Be^{-\frac{1}{3}t} + 40\sin t - 20\cos t$ | A1 | 1.1b | | | | (8) | | | (b) | $t = 0, x = 0 \Rightarrow A + B = 20$ | M1 | 3.4 | | | $x = 0, \frac{dx}{dt} = -Ae^{-t} - \frac{1}{3}Be^{-\frac{1}{3}t} + 40\cos t + 20\sin t = 0$ $\Rightarrow A + \frac{1}{3}B = 40$ | M1 | 3.4 | | | $x = 50e^{-t} - 30e^{-\frac{1}{3}t} + 40\sin t - 20\cos t$ | A1 | 1.1b | | | $t = 9 \Rightarrow x = 33 \text{m}$ | A1 | 3.4 | | | | (4) | | | | | (12 n | narks) | | Ques | Question 9 notes: | | |------------|---|--| | (a)(i) | | | | M1: | Correct explanation that in the model, $m = 3$ | | | (ii) | | | | M1: | Differentiates the given PI twice | | | M1: | Substitutes into the given differential equation | | | A1*: | Reaches 200cost and makes a conclusion | | | or | | | | M1: | Uses the correct form for the PI and differentiates twice | | | M1: | Substitutes into the given differential equation and attempts to solve | | | A1*: | Correct PI | | | (iii) | | | | M1: | Uses the model to form and solve the auxiliary equation | | | A1: | Correct complementary function | | | M1: | Uses the correct notation for the general solution by combining PI and CF | | | A1: | Correct General Solution for the model | | | (b) | | | | M1: | Uses the initial conditions of the model, $t = 0$ at $x = 0$, to form an equation in A and B | | | M1: | Uses $\frac{dx}{dt} = 0$ at $x = 0$ in the model to form an equation in A and B | | | A1: | Correct PS | | | A1: | Obtains 33m using the assumptions made in the model | |