

JUNE 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

			_
Page 1	Mark Scheme	Syllabus	Paper
-	A & AS Level Examinations – June 2002	9709, 8719	7

		1		
1	$\bar{r} + 2.326 \times \frac{2.4}{1.00}$	Bl		For z value of 2.33
•	$\bar{x} \pm 2.326 \times \frac{2.4}{\sqrt{90}}$	MI		For expression of correct form involving $\sqrt{90}$ in
ļ	2.4			denom
	$2.326 \times \frac{2.4}{\sqrt{90}} \times 2$ Width			For subtracting lower from upper, or multiplying
	Widel	Ml		half-width by 2
	= 1.18	Ai	4	For correct answer
ļ		<u> </u>		
2 E	ETHER	·		pq
	$0.275 \pm 1.96 \times \sqrt{\frac{0.275 \times 0.725}{120}}$	M2		Calculation of correct form $p \pm z \sqrt{\frac{pq}{n}}$
	1 120	Bl		(SR M1 if only one side of interval seen)
	0.195	~`		Use of $p = 0.275$
0	n	Al	4	For correct answer
O	33± 1.96√ 120x0.275x0.725			Calculation of correct form np±z√npq (accept just
	23.413 < p < 42.586	Mi		one side of interval)
	120 120	MI		Division by 120 (BOTH sides)
	0.195 < p < 0.355	Bl		Use of 0.275
		A1	4	Correct answer
i _		{	·	
3	3 sugar ~ N(1500, 1200)	Bl		For (normal dist with) correct means for both
•	5 coffee ~ N(1000,720) Total weight ~ N(2850, 1920)	B1 MI		For (normal dist with) correct variance for both For adding their variances and means(+ purse)for
	or ~ N(2500, 1920)	1011		coffee and sugar
İ		Al		For correct mean and variance for their total weight
	$\phi\left(\frac{2900-2850}{}\right)$			ie with or without the purse
	$P(W < 2900) = \Phi\left(\frac{2900 - 2850}{\sqrt{1920}}\right)$	Ml		For standardising and use of tables (consistent inclusion/exclusion of purse)
	$\Phi\left(\frac{2550-2500}{2500}\right) = 0.873$	Al	6	For correct answer
	$P(W < 2900) = \sqrt{1920}$ $OrP(W < 2550) = \Phi\left(\frac{2550 - 2500}{\sqrt{1920}}\right) = 0.873$		-	
		81		For correct mean
4	(i) $x = 14.2$, $s^2 = \frac{1}{149} \left[37746 - \frac{2130^2}{150} \right] = 50.3(4)$	B1	2	For correct variance
	149(1150)			
	(ii) H_0 : $\mu = 12$ and H_1 : $\mu \neq 12$	B1		Both hypotheses correct
<u>'</u>	Test statistic $z = 14.2 - 12 = 3.798$	MI		5
	(50.34	Al		For standardising attempt with se of form \sqrt{n}
	√ <u>150</u>	[For 3.80 Or comparing $\Phi(3.798)$ with 0.95 (or equiv. for one
		Ml		tail test) Signs consistent.
	Compare with 1.645 or 1.282 for one-tail t	ΑI	5	Correct conclusion ft on their z and H_1
<u> </u>	Reject exam boards claim	-		P20010ID
5	(i) P(9 or 10H) = $(0.5)^9 x (0.5) x_{10} C_9 + (0.5)^{10}$ (= 0.01074)	MI M1		For P(9 or 10H) For P(9 or 10T)
1	P(9T or 10T) = 0.01074	MI		For identifying outcome for Type I error
	P(type 1 error) = 0. 0215 AG	Al	4	For obtaining given answer legitimately
				Promotories Wasselder Na Barrie A d
	(ii)P(9 or 10H)= $(0.7)^9 \times (0.3) \times {}_{10}C_9 + (0.7)^{10}$ (=0.1493)	MI MI		For evaluating P(9 or 10H) with P(H) = 0.7 For evaluating P(9 or 10T) with P(T) = 0.3
1	P(9 or 10T) = $(0.3)^9 \times (0.7) \times_{10} C_9 + (0.3)^{10}$, vii		101 010000000g x (2 00 101) 11001 (1) = 0.5
İ	= 0.000143	MI		For identifying outcome for Type II error
	P(type H error) = 1 - 0.1493 - 0.000143	AI	4	For correct answer (SR 0.851 no working B2)
	= 0.851	1 * * *	•	1 01 001101 0101 (011 0101 110 11011111111

Page 2	Mark Scheme	Syllabus	Paper
	A C ACL		- rabei
	A & AS Level Examinations – June 2002	9709, 8719	7

	<u> </u>		
6 (i) mean = 6	Ml		For mean 6 and evaluating a Poisson prob
P(X=5)=0.161	A1	2	For correct answer
	!		
(ii) μ=2	Bl		For μ =2 used in a Poisson prob.
$P(0) = e^{-2} (= 0.135)$	Ml		For 1 - P(0), any mean
1 - P(0) = 0.865	ΑI	3	For correct answer
	[
	BI		For μ=24
(iii) $\mu = 24$, $\sigma^2 = 24$	Bl		For their var=their mean
19.5 - 24	M1		For standardising with or without cc
$z = \frac{19.5 - 24}{\sqrt{24}} = -0.9186$	Al		For correct continuity correction
$1 - \Phi(0.9186) = 0.179$	Al	5	For correct answer
$1 - \psi(0.9180) = 0.179$			(SR Using Poisson with no approximation
	Ì		(0.180(26)) scores M1 A1 only)
1			
7 (i) $E(X) = \int 2x(1-x) dx$	M1		For sensible attempt to integrate $xf(x)$
7 (i) $E(X) = \int_{0}^{1} 2x(1-x) dx$			
t			
$\int 2x - 2x^2 dx$	Al		For correct integrand (any form)
= 0			
$\int_{0}^{1} 2x - 2x^{2} dx$ $= \left[x^{2} - \frac{2x^{3}}{3} \right]_{0.333}$			
$\left x^2 - \frac{2x}{x} \right $	Al	3	For correct answer
$= \begin{bmatrix} 3 \end{bmatrix} = 0.333$			
l .	ļ		
$2x^2 - 2x^3 dx$	M1*		For sensible attempt to integrate $x^2 f(x)$
$\int_{0}^{1} 2x^{2} - 2x^{3} dx$ (ii) $Var(X) = \int_{0}^{1} (0.333)^{2}$	}		
$= \left[\frac{2x^3}{3} - \frac{2x^4}{4}\right]_{-(0.333)^2}$			_
3 - 4	M1*dep		For their integral— (their mean) ²
= 0.0556	A1	3	For correct answer
žag us vi	1		
$\int 2(1-x) \ dx$	Ml		For identifying both sides of equation
(iii) 0 = 0.98	1		
$\left[2x-x^2\right]_{0.98}$	Al		For correct equation in any form
$x^2 - 2x + 0.98 = 0$	M1		For solving for x (must be sensible attempt)
x = 2x + 0.98 = 0 x = 0.859	Al		For correct answer
x = 0.839 859 tonnes	Blft		For applying concept of continuous rv.
	1.21		For identifying v from a relevant til
OR 2	MI		For identifying x from a relevant diagram
$\sum_{n=0}^{\infty}$	Al		For correct equation
$0.98 \times \frac{(1-x)}{2} \times 2(1-x) = 0.02$	MI		For solving for x For correct answer
'	AI	_	
	Bl	5	For applying concept of continuous rv.
x 1	<u>L</u>		<u></u>