CAMBRIDGE

November 2003

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1	Mark Scher	Syllabus	Paper					
	– NOVEMBER 2003			9709/0390	0			
1 x freq OR	0 2 23 17	M1		For reasona or probs but	ible attempt t not using p	at the mear rob=0.5	n using freqs	
P(0) = 23/40, P(2) = 17/40 Mean = 34/40 = 0.850 Variance = (4×17) / 40 - (0.85) ² = 0.978 (exact answer 0.9775) (391/400)		A1 M1 A1ft	4	For correct mean For correct variance formula For correct answer				
frequencies: 3, 7, 6, 3, 1 scaled frequencies: 3, 7, 3, 1.5, 0.5 or 0.006, 0.014, 0.006, 0.003, 0.001		M1		For frequer cw/freq but	ncies and at not cw × fr	tempt at sca req , not cw/n	aling, accept mid point	
scaled f		A1		For correct seen on the	heights from graph	n their scaled	1 frequencies	
		B1		For correct no halves or	widths of b r gaps or less	ars, uniform s-than-or-eq	horiz scale, ual tos	
0 500 1000	2000 3000 4000 area, m ²	B1	4	Both axes la width	abelled, fd a	und area or r	m ² . Not class	
 3 28 - μ = 0.496σ (accept 0.495 or in between) 35 - μ = 1.282σ (accept 1.281 or in between, but not 1.28) 		M1 A1 A1		For any equation with μ and σ and a reasonable z value not a prob. Allow cc, $\sqrt{\sigma}$, σ^2 , or – and give M1 A0A1ft for these four cases For 2 correct equations				
		M1		For solving variable sen	g their two sibly	equations	by elim 1	
$\sigma = 8.9$ $\mu = 23.$	11 (accept 8.89 to 8.92 incl) 6	A1 A1	6	For correct For correct	answer answer			
$\begin{array}{r} 4 (\mathbf{i}) \ (0.95)^5 \\ = 0.774 \end{array}$		M1 A1	2	For 0.95 see For correct	en, can be in final answer	nplied		
(ii) $(0.95)^4 \times (0.05)^1 \times {}_5C_1$		M1		For any b powers sum	binomial calculation with 3 terms, mming to 5			
= 0.204		A1	2	For correct	answer			
(iii) (0.95) ²	× (0.05)	M1		For no Ps, n $p^2(1-p)$	to Cs, and or	nly 3 terms o	of type	
= 0.0451	1(361/8000)	A1	2	For correct answer				

Page 2	Mark Scheme				Syllabus	Paper	
	AICE AND A AND AS LEVEL	ER 2003	9709/0390	6			
5		M1		For correct	shape ie <i>M</i> a	and F first	
0.05 C 0.54 0.95 NC		A1 A		All correct, ie labels and probabilities, no labels gets M1 only for (implied)correct shape			
0.46 OR	$\begin{array}{c} 0.02 C \\ F \\ 0.98 NC \end{array}$	M1		For finding	P(M and C)	and $P(F an)$	1 <i>C</i>)
P(M C)	$= \frac{0.54 \times 0.05}{0.54 \times 0.05 + 0.46 \times 0.02}$ $= 0.746 (135/181)$	M1 B1 M1 A1	6	For correct For correct For summin For correct	conditional j numerator g two two-fact answer	probability tor 'terms'	
6 (a) (i) 1856 (ii) ${}_{17}C_5 = 61$	4 or $6/18 \times$ their (i) or ${}_{18}C_6 - {}_{17}C_6$ 88	B1 M1 A1	1 2	For correct For using 1 For correct	final answer 7 and 5 as a answer	perm or cor	nb
(b) (i) 4032 (ii) 5! × = 28	$\begin{array}{l} 20\\ 3! \times {}_{4}C_{1} \end{array}$	B1 B1 B1 B1 B1	1	For correct For $5!$ or $5P_5$ u For $3!$ For $4C_1$, may For correc	final answer sed in a prod or y be implied by t final answe	quotient with y 4! r	a term ≠ 5!
7 (i) $z = \pm 1.1$ P(7.8< = 0.87 = 0.3735 0.37	43 $T<11$ = $\Phi(1.143) - 0.5$ 35 - 0.5 5 (accept ans rounded to 0.37 to 4)	M1 A1 M1 A1	4	For standard accept $\sqrt{\sigma}$ For seeing For subtrac For correct	dising, can be 0.8735 eting two prol answer	implied, no bs, $p_2 - p_1$ w	cc, no σ^2 but where $p_2 > p_1$
(ii) (0.1265 = 0.04	$(0.8735) \times {}_{3}C_{2}$	M1 A1ft	2	For any thr with power For correct	ree term binor s summing to answer ft on	mial-type ex o 3 their 0.873	xpression 5/0.1265
(iii) Not sym Does not	metric so not normal agree with the hospital's figures	B1 B1dep	2	For any val For stating i	lid reason t does not agre	ee, with no in	valid reasons
8 (i) 18c = 1		M1		For $\sum p_i$	= 1		
c = 1/18	= 0.0556	A1	2	For correct	answer		
(ii) E(X) = 2 Var (X) =	2.78 (= $25/9$)(= $50c$) = 1.17 (= $95/81$) (= $160c - 2500 c^2$)	M1 A1ft M1 A1ft	4	Using correct For correct For correct For correct	ect formula for expectation, variance for answer ft on	or $E(X)$ ft on their of mula their c	2
(iii) $P(X > 2) = 0.611$.78) = 11c (= 11/18)	M1 A1	2	For using th For correct	eir correct nur answer	nber of discr	ete values of X