#### CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

### MARK SCHEME for the May/June 2015 series

## 9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 63    |

PMT

#### Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9709     | 63    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

#### **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| P | Page 4 | Mark Scheme                                                        |                 |                     |                    |                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Syllabus                                        | Paper                |  |
|---|--------|--------------------------------------------------------------------|-----------------|---------------------|--------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|--|
|   |        | Cambridge International AS/A Level                                 |                 |                     |                    | – May/June 2015 9709 63                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 63                   |  |
|   |        |                                                                    |                 |                     |                    | 1                                                                              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |  |
| 1 |        | z = 1.136                                                          |                 |                     | B1 $\pm 1.136$ see |                                                                                |                                                                 | $n, not \pm 1.14,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                      |  |
|   |        | $1.136 = \frac{195 - \mu}{22}$                                     |                 |                     |                    | M1                                                                             |                                                                 | Standardising, no cc no sq rt,<br>equated to their z not 0.128 or 0.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                      |  |
|   |        | μ =                                                                | $\mu = 170$     |                     |                    |                                                                                | [3]                                                             | Correct answer, nfww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                      |  |
| 2 | (i)    |                                                                    |                 |                     |                    |                                                                                |                                                                 | All values may be decimals or %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |  |
|   |        |                                                                    | Kitchen<br>mess | Kitchen<br>not mess | Total              | B1                                                                             |                                                                 | 2 probabiliti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es correct                                      |                      |  |
|   |        | On time                                                            | 1/10            | 1/10                |                    | B1                                                                             |                                                                 | 2 further pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | babilities con                                  | rect                 |  |
|   |        | Not on time                                                        | 1/2             |                     | 4/5                |                                                                                |                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                      |  |
|   |        | Total                                                              | 3/5             | 4/10                |                    | B1                                                                             | [3]                                                             | 2 further probabilities correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |  |
|   | (ii)   | P(not on tin                                                       | ne given kito   | chen mess) =        | $=\frac{1/2}{3/5}$ | M1 A cond prob fraction seen (using corresponding combined outcomes and total) |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | n (using<br>outcomes |  |
|   |        | = 5/6  o.e. A1 [2] FT from $<1, 3/51$                              |                 |                     |                    |                                                                                | FT from the <1, 3/5ft<1                                         | ir values, 3sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or better,                                      |                      |  |
| 3 |        | $\mu = 300 \times 0.072 = 21.6, \ \sigma^2 = 20.0448$              |                 |                     |                    |                                                                                |                                                                 | $300 \times 0.072$ seen and<br>$300 \times 0.072 \times 0.928$ seen or implied<br>$(\pi - 4.4771 \ \pi^2 - 20(.00))$ as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                      |  |
|   |        | $P(x < 18) = P\left(z < \frac{17.5 - 21.6}{\sqrt{20.0448}}\right)$ |                 |                     |                    | M1                                                                             |                                                                 | $(\sigma = 4.4771)$<br>±Standardis<br>sq root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sigma = 20(.0)$ ing, their mea                | oe<br>m/var, with    |  |
|   |        | =P(z < -0.9157)                                                    |                 |                     | MI                 |                                                                                | Cont corr 17                                                    | 7.5 or 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                      |  |
|   |        | = 1 - 0.82<br>= 0.180                                              | 201             |                     |                    | M1<br>A1                                                                       | [5]                                                             | Correct area 1 - Φ<br>Answer wrt 0.180, nfww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                      |  |
| 4 | (i)    | $P(1 W) = 6/9 \times 3/8 + 3/9 \times 6/8$                         |                 |                     | M1                 |                                                                                | summing 2 t<br>(condone rep<br>$\frac{1}{2} \times \frac{1}{2}$ | two-factor propagation provide the provident of the provi | obs<br>ot $\frac{1}{2} \times \frac{1}{2} +$    |                      |  |
|   |        | $= \frac{1}{2}$                                                    | AG              |                     |                    | A1                                                                             | [2]                                                             | Correct answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wer, fully just                                 | ified                |  |
|   |        | $OR \frac{{}^{6}C_{1} \times {}^{3}C_{1}}{{}^{9}C_{2}}$            |                 |                     |                    | M1                                                                             |                                                                 | Using combinations consistent,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                      |  |
|   |        | $= \frac{1}{2} AG$                                                 |                 |                     | A1                 |                                                                                | Correct answer, fully justified                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |  |
|   | (ii)   | $P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$     |                 |                     | B1                 |                                                                                | Distribution                                                    | table with 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2 only                                        |                      |  |
|   |        | $P(W,W) = 6/9 \times 5/8 = 30/72 (5/12)$                           |                 |                     | B1                 |                                                                                | $P(W,W)$ or $P(\overline{W},\overline{W})$ correct              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |  |
|   |        | Prob                                                               | 1/12            | 1/2                 | 5/12               | B1 $\sqrt[n]{}$ [3] $P(W,W) + P(\overline{W},$                                 |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P\left(\overline{W},\overline{W}\right) = 0.5$ | 5                    |  |
|   | (iii)  | E(X) = 16/1                                                        | 2 (4/3) (1.33   | 3) isw              |                    | B1                                                                             | [1]                                                             | Condone 1(.<br>seen, nfww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .3) if correct                                  | working              |  |

| Ρ | age 5 | Mark Scheme                                                                                                                                                                    | Syllabus                         | Paper |                                                                                                                                                                                               |                                                                                                      |                                                                              |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|   |       | Cambridge International AS/A Level -                                                                                                                                           | – May                            | /June | 2015                                                                                                                                                                                          | 9709                                                                                                 | 63                                                                           |
|   |       |                                                                                                                                                                                | 1                                |       | I                                                                                                                                                                                             |                                                                                                      |                                                                              |
| 5 | (i)   | $P(large) = 1 - \Phi\left(\frac{29 - 21.7}{6.5}\right)$<br>= 1 - \Phi(1.123) = 1 - 0.8692<br>= 0.1308<br>$P(0,1) = (0.8692)^{8/} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$<br>= 0.718 | M1<br>M1<br>A1<br>M1<br>M1<br>A1 | [6]   | Standardising no cc no sq rt<br>Correct area $1 - \Phi$<br>Rounding to 0.13<br>Any bin term with ${}^{8}C_{x}p^{x}(1-p)^{8-x}$<br>Summing bin P(0) + P(1) only witt $= 8$ , oe<br>Correct ans |                                                                                                      |                                                                              |
|   | (ii)  | $= 1 - (0.8692)^{n} > 0.98$ $(0.8692)^{n} < 0.02$ Least number = 28                                                                                                            | M1<br>M1<br>A1                   | [3]   | eq/ineq invo<br>(0.1308) <sup>n</sup> , 0.<br>without a 1<br>solving atter<br>error) – may<br>answer<br>correct answ                                                                          | lving their (0<br>02 or 0.98 of<br>npt (could be<br>be implied b<br>rer                              | 2.8692) <sup>n</sup> or<br>with or<br>trial and<br>by their                  |
| 6 | (i)   | cf<br>3.5 4.0 4.5 5.0 nitrogen<br>content                                                                                                                                      | B1<br>M1<br>A1                   | [3]   | Uniform axe<br>labelled, at 1<br>4.8 seen<br>5 points plot<br>paper<br>3.5 3.8<br>0 6<br>All points co<br>curve (conde<br>line segment                                                        | es cf and nitro<br>east 0 to 70 a<br>ted correctly<br>4.0 $4.218$ $41prrect and a roone 1 missedts.$ | ogen content<br>and 3.5 to<br>on graph<br>4.5 $4.862$ $70easonablepoint) or$ |
|   | (ii)  | 70 - their  55 = 15<br>= 21.4%                                                                                                                                                 | M1<br>A1                         | [2]   | Subt a value $n < 29$ )<br>Correct ans,                                                                                                                                                       | <ul> <li>&gt; 41 from 7</li> <li>accept 18.5 -</li> </ul>                                            | 0 (or <i>n</i> /70,<br>- 22                                                  |
|   | (iii) | median = 4.15                                                                                                                                                                  | B1                               | [1]   | Accept 4.1<                                                                                                                                                                                   | median < 4.2                                                                                         | 2, nfww                                                                      |

Page 6

# Mark SchemeSyllabusCambridge International AS/A Level – May/June 20159709

|       | r                                                                                                                                                                                                                                                             |                     |                                                                                                                                                                                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iv)  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                        | M1<br>M1            | Attempt at freqs, at least 3 correct,<br>ignore labelling<br>Attempt at fd as f/cw only at least 3<br>correct FT<br>(Accept f/cw $\times k$ )                                  |
|       | 100       80       60       40                                                                                                                                                                                                                                | A1                  | Correct heights seen on graph (plot<br>at 4.8,27 A0)<br>Graph paper must be used<br>(3 correct relative heights implies<br>M1M1)                                               |
|       | 20-                                                                                                                                                                                                                                                           | B1                  | Correct bar ends seen on graph – graph paper used                                                                                                                              |
|       | 3.5 4.0 4.5 5.0 nitrogen content                                                                                                                                                                                                                              | B1 <b>[5]</b>       | Correct linear scale and labels.                                                                                                                                               |
| 7 (i) | W S D<br>1 1 3 = $6 \times 4 \times^{3}C_{3} = 24$<br>1 3 1 = $6 \times^{4}C_{3} \times 3 = 72$<br>3 1 1 = ${}^{6}C_{3} \times 4 \times 3 = 240$<br>1 2 2 = $6 \times^{4}C_{2} \times^{3}C_{2} = 108$<br>2 1 2 = ${}^{6}C_{2} \times 4 \times^{3}C_{2} = 180$ | M1<br>M1<br>M1      | Listing at least 4 different options<br>Mult 3 (combs) together assume $6 = {}^{6}C_{1}, \Sigma r = 5$<br>Summing at least 4 different<br>evaluated/unsimplified<br>options >1 |
|       | 2 2 $1 = {}^{6}C_{2} \times {}^{4}C_{2} \times 3 = 270$<br>Total = 894                                                                                                                                                                                        | B1<br>A1 <b>[5]</b> | At least 3 correct unsimplified<br>options<br>Correct answer                                                                                                                   |
| (ii)  | ${}^{3}P_{2} \times {}^{10}P_{8}$                                                                                                                                                                                                                             | B1                  | $^{3}P_{2}$ oe seen multiplied either here or                                                                                                                                  |
|       |                                                                                                                                                                                                                                                               | B1                  | in (iii)<br>$k^{10}P_x$ seen or $k^{\nu}P_8$ with no addition,                                                                                                                 |
|       | = 10886400                                                                                                                                                                                                                                                    | B1 <b>[3]</b>       | $k \ge 1, y > 8, x < 10$<br>Correct answer, nfww                                                                                                                               |
| (iii) | DSWSWSWSWD or DWSWSWSD<br>D in ${}^{3}P_{2}$ ways = 6<br>S in ${}^{4}P_{4}$ ways = 24                                                                                                                                                                         | B1                  | If ${}^{3}P_{2}$ has not gained credit in (ii)<br>may be awarded<br>${}^{4}P_{4}$ or ${}^{6}P_{4}$ oe seen multiplied or<br>common in all terms (no division)                  |
|       | W in ${}^{\circ}P_4 = 360$<br>Swap SW in 2 ways<br>Total = 103680 ways                                                                                                                                                                                        | B1<br>B1 <b>[3]</b> | Mult by 2 (condone 2!)<br>Correct answer, 3sf or better, nfww                                                                                                                  |

Paper 63