UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9709 MATHEMATICS

9709/06

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	06

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	06

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently
	accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	06

1	(i)	z = 0.674	B1		\pm 0.674 or rounding to, seen, e.g. 0.6743
		$\frac{1002 - \mu}{8} = 0.674$	M1		Standardising and attempting to solve for µ, must
					use recognisable z-value, no cc, no sq rt, no sq
		$\mu = 997$	A1	[3]	Correct answer rounding to 997
and the state of t	(ii)	$P(2) = 3 \times \frac{225}{900} \times \frac{224}{899} \times \frac{675}{898}$	M1		$900 \times 899 \times 898$ or 900 C ₃ seen in denom
		= 0.140	A1	[2]	Correct answer not 0.141 or 0.14
		OR $\frac{^{225}C_2 \times ^{675}C_1}{^{900}C_3}$			
2	(i)	$P(X=2) = 1/4 \times 1/4 + 1/4 = 5/16 \text{ AG}$	M1		Considering cases (1, 1) and (2)
		OR can use a table 12 2 4 4 23 2 5 4 34 2 6 4 45 2 7 4	A1	[2]	Correct given answer legitimately obtained (1/16 + 4/16 needs some justification but 1/16 + 1/4 is acceptable)
	(ii)	$E(X) = \sum xp$	M1		Using correct formula for $E(X)$, no extra division
		= 15/4 (3.75)	A1		Correct answer
		$Var(X) = 2^2 \times 5/16 + 3^2 \times 1/16 + 4^2 \times 3/8 + (15/4)^2 = 260/16 - 225/16 = 35/16 (2.19)$	M1 A1	[4]	Using a variance formula correctly with mean ² subtracted numerically, no extra division Correct final answer
3	(i)	P(X < 3) = P(0) + P(1) + P(2)	M1		Binomial term with ${}^{11}C_r p^r (1-p)^{11-r}$ seen
		= $(0.84)^{11} + (0.16)(0.84)^{10} \times {}^{11}C_1 + (0.16)^2(0.84)^9 \times {}^{11}C_2$	M1		Correct expression for $P(0, 1, 2)$ or $P(0, 1, 2, 3)$ Can have wrong p
		= 0.1469 + 0.30782 + 0.2931 $= 0.748$	A1	[3]	Correct final answer. Normal approx M0 M0 A0
	(ii)	$\mu = 125 \times 0.64 = 80$ $\sigma^2 = 125 \times 0.64 \times 0.36 = 28.8$	B1		80 and 28.8 or 5.37 seen
		$P(X > 73) = 1 - \Phi\left(\frac{73.5 - 80}{\sqrt{28.8}}\right)$	M1		standardising, with or without cc, must have sq rt in denom
		$=\Phi(1.211)$	M1 M1		continuity correction 73.5 or 72.5 only correct region (> 0.5 if mean > 73.5, vv if mean
		= 0.887	A1	[5]	< 73.5 correct answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	06

4 (i) ${}^{13}C_{10} \times {}^{12}C_9 \times {}^{6}C_4 \times {}^{7}C_4$	M1		Expression involving the product of 4 combinations
= 33033000 (33000000)	A1	[2]	Correct final answer allow 33×10 ⁶ or 3.3×10 ⁷
(ii) 5! × 6!	B1		6! or 5! or 4! oe seen no denom
= 86400	M1		a single product involving 6! and either 4! or 5!
	A1	[3]	Correct final answer
(iii) 4! × 3! × 2	B1 M1		4! or 3! or 4!/4 seen a single product involving 3! (or 4!/4) and 4!
= 288	A1	[3]	Correct final answer
5 (i) $P(E) = \frac{1}{4}$, $P(C) = \frac{1}{4}$, $P(JT) = \frac{1}{2}$	B1 B1	[2]	1/4, 1/4, and 1/2 seen oe 3 evaluated probs correctly associated
(ii) E 6/10 F			
1/4 4/10 NF 7/10 F	F M1		E, C, JT then F on appropriate shape
3/10 N 8/10 F	F A1ft	[2]	All probs and labels showing and correct, ft their (i) if $\Sigma p = 1$. If nothing seen in part (i) then give M1 A1ft bod provided their $\Sigma p = 1$
JT 2/10 NF	7		No retrospective marking
(iii) $P(F) = (1/4 \times 6/10) + (1/4 \times 7/10)$ $(1/2 \times 8/10)$	0) + M1		Summing 3 appropriate two-factor products provided $\Sigma p = 1$
= 29/40 (0.725)	B1	[2]	Correct answer
(iv) $P(C NF) = \frac{P(C \cap NF)}{P(NF)}$	B1ft		1-29/40 seen in denom, ft 1 – their (iii)
$=\frac{3/40}{(1-29/40)}$	M1	[2]	attempt at cond prob with their $C \cap F$ or $C \cap NF$ in numerator
= 3/11 (0.273) OR using ratios $3/(4+3+4)$	A1	[3]	correct answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9709	06

6 (i) $a = 494$ b = 46	B1 B1	[2]	
<i>D</i> = 40	Di	[²]	
(ii)	B1		Correct linear scale minimum 0 to 540 and 0 to 60
	B1		Labels (cf or people or number of people) and (time, or minutes) and attempt at cf or cf step polygon
	M1		Attempt to plot points at (10, 210), (20, 344), (30, 422), (40, 494)
<u> </u>	A1	[4]	Correct graph through (0, 0) and (60, 540)
(iii) median is	M1		Attempt to read from graph at line $y = 270$ or 270.5
13.5 to 14.6 min	A1	[2]	Correct answer
(iv) $(5 \times 210 + 15 \times 134 + 25 \times 78 + 35 \times 72 + 50 \times 46) / 540$ = $9830 / 540$	M1		Using mid points and frequencies
= 18.2 min	A1		Correct mean
$(5^2 \times 210 + 15^2 \times 134 +) - 18.2^2$	M1		Attempt at $\sum x^2 f / \sum f$ – their mean ² numerically, could use cfs, ucb, but not class widths
sd = 14.2 min	A1	[4]	Correct answer
(v) $18.2 \pm 7.1 = 11.1, 25.3$ 390 - 225	M1		Attempt to read their mean $\pm \frac{1}{2}$ sd from cf graph
= 155 to 170 people	A1	[2]	Correct answer