June 2004

GCE A AND AS LEVEL AICE

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/06, 0390/06

MATHEMATICS Paper 6 (Probability and Statistics 1)

Page 1	Mark Schen	ne	Syllabus Paper		
	A AND AS LEVEL – .	JUNE 2004	9709/0390 6		
1 (i) $\overline{x}_{A} = 139$ $\sigma_{A} = 83$	9 (138.75) 9.1	B1 B1 2	For the mean For the sd		
(ii) team E smalle	3 r standard deviation	B1 B1 dep 2	Independent mark Need the idea of spread SR If team A has a smaller sd then award B1only for 'teamA, smaller sd'		
2 (i) axes a points (3,0) (1 (60,640	nd labels 15,160) (20,320) (35,480) 0)	B1 B1 B1 3	For correct uniform scales and labels on both axes, accept Frequency, %CF, Number of people, allow axes reversed, allow halves For 3 correct points All points correct and reasonable graph incl straight lines		
(ii) accep	t 60 – 70 for straight lines 40 – 70 for curve	M1 A1 2	For subtracting from 640 can be implied For correct answer, reasonably compatible with graph		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 A1 3	For 36 in the uncancelled denominator somewhere, accept decimals eg 0.305 recurring or 0.306 etc For 3 correct probabilities All correct		
(ii) E(X) = $1 \times \frac{11}{36} + 2 \times \frac{9}{36} + 3 \times \frac{7}{36} + 4 \times \frac{5}{36} + 5 \times \frac{3}{36} + 6 \times \frac{1}{36} = \frac{91}{36}$		M1 A1 2	For calculation of $\sum x_p$ where all probs < 1		
4 (i) $z = \frac{350 - 450}{120}$ = -0.833 % small = 1 - 0.7975 = 0.2025 or 20.25%		M1 A1 A1 3	For standardising accept 120 or $\sqrt{120}$, no cc For correct <i>z</i> value, + or -, accept 0.83 For answer rounding to 0.202 or 0.203		
(ii) $0.7975 \div 2 = 0.39875$ each $\Phi z_2 = 0.60125$ $z_2 = 0.257$ $x = 120 \times 0.257 + 450$ = 481		M1 M1dep M1 M1dep A1 5	For dividing their remainder by 2 For adding their above two probs together or subt from 1 For finding the <i>z</i> corresponding to their probability For converting to <i>x</i> from a <i>z</i> value For answer, rounding to 481		

[Page 2	Mark Scheme				Syllabus	Paper]
		A AND AS LEV	EL – JI	JNE	2004	9709/0390	6]
5	(a) (i) 3 ×5× ₃C₁× ; = 90	3×2 or ${}_{5}C_{1} \times {}_{3}C_{1} \times 2$	M1 A1	2	For multiplying For correct ans	3×5×3 wer		
	(ii) (3×5× = 69	2) + (3×3) + (5×2×3)	M1 M1 A1	3	For summing o S&M,S&D,M&E 3 × 5 × a + 3 × for integers a,b For correct ans	ptions that) 3×b+5× ,c wer	show 3× c seen	1
(t)) ₁₄ C ₅ × ₉ C ₅ = 252252	$\times {}_4C_4$ or equivalent	M1 M1 A1	3	For using comb For multiplying groups For correct ans NB 14!/5!5!4! s correct answer	oinations no choices for wer cores M2 a	ot all ₁₄C… r two or thi nd A1if	ree
6 (i)	0.9 Win	B1		For top branch 0.1)	es correct (0.65, 0.9,	
	0.65 1 st in	0.1 Lose 0.6 Win	B1		For bottom bra 0.8, 0.2)	nches corre	ect (0.35,	
\leq	0.35 1 st out	0.8 2 nd in 0.4 Lose	B1		For win/lose op 0.4)	otion after 2	nd in (0.6,	
0.2 2 nd out Lose		B1	4	For all labels including final lose at end of bottom branch				
(i	i) 0.65×0.1+ = 0.247	0.35×0.8×0.4 + 0.35×2	M1 M1 A1	3	For evaluating For 1 st out 2 nd i lose For correct ans	1 st in and lo n lose, or 1 wer	ose seen st out 2 nd c	out
(i	ii) $\frac{0.65 \times 0.1}{0.247}$		M1		For dividing the their answer to	eir 1 st in and (ii)	d lose by	
	= 0.263	(= 5/19)	A1ft	2	For correct ans 0.65×0.1/their	wer, ft only (ii)	' on	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/0390	6

7 (i) $P(0) = (0.8)^{15} (= 0.03518)$ $P(1) = {}_{15}C_1 \times (0.2) \times (0.8)^{14}$ (= 0.1319) $P(2) = {}_{15}C_2 \times (0.2)^2 \times (0.8)^{13}$ (= 0.2309) $P(X \le 2) = 0.398$	B1 B1 B1 3	For correct numerical expression for P(0) For correct numerical expression for P(1) or P(2) For answer rounding to 0.398
(ii) $1 - (0.8)^n \ge 0.85$ $0.15 \ge (0.8)^n$ n = 9	M1 M1 dep A1 3	For an equality/inequality involving 0.8, <i>n</i> , 0.85 For solving attempt (could be trial and error or lg) For correct answer
(iii) $\mu = 1600 \times 0.2 = 320$, $\sigma^2 = 1600 \times 0.2 \times 0.8 = 256$ P($X \ge 290$) or P(X<350) $= 1 - \Phi\left(\frac{289.5 - 320}{\sqrt{256}}\right) = 1 - \Phi(-1.906)$ $= \Phi(1.906) = 0.972$	B1 M1 M1 M1 A1 5	For both mean and variance correct For standardising , with or without cc, must have $$ on denom For use of continuity correction 289.5 or 290.5 For finding an area > 0.5 from their <i>z</i> For answer rounding to 0.972