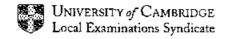


JUNE 2002


GCE Advanced Subsidiary Level Advanced International Certificate of Education

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /6, 0390 /6

MATHEMATICS (Probability and Statistics 1)

			_
Page 1	Mark Scheme	Syllabus	Paper
	AS Level & AICE Examinations – June 2002	9709, 0390	6

1 (i) not independent $P(A) \times P(B) \neq P(A \text{ and } B)$	Bl Bldep	2	
(ii) not mutually exclusive P(A and B) ≠ 0	B1 B1	2	Can be stated in words
2 both axes correct	B1		For correct scales and labels on at least one axis
points	M1 Al		For points at upper bounds or 15.5 or 14.5 All correct and smooth curve or straight lines
median IQ range	BIR		On mid-points or upper bounds For evaluating their UQ – theirLQ
	Alft	6	For correct answer, ft on correct upper bounds only
3 (i) a 1 4 9 16 $P(A=a)$ $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$	Ml Al		For $A = 1, 4, 9, 16$, or $1,1,1,4,9,16$ Any three correct probabilities for 3 different vals of A
	Αl	3	All correct
(ii) $E(A) = 1 \times 1/2 + 4 \times 1/6 + 9 \times 1/6 + 16 \times 1/6$ = 5.33 $Var(A) = 1^2 \times \frac{1}{2} + 4^2 \times \frac{1}{6} + \dots - (5.33)^2$ = 30.9	MI AI MI	4	For calculation of $\sum xp$ where $\sum p$ must be 1 For correct answer For calculation of $\sum x^2p$ – (their $E(A)$) ² $\sum p$ need not be 1 For correct answer
4 (i) - 47.2/30 = -1.573		_	
OR $\Sigma x - \Sigma 110 = -47.2$ and $\Sigma 110 = 3300$ $\overline{x} = 110 - 1.573 = 108 (108.4)$ standard deviation = $\sqrt{\frac{5460}{30} - (-1.573)^2}$ = 13.4	B1 M1 A1	4	For correct answer For $\frac{5460}{30}$ – (their coded mean) ² For correct answer
(ii) $z = \frac{110 - 107.6}{13.8} = 0.174$ $P(X > 110) = 1 - \Phi(0.174)$ = 1 - 0.5691	MI MI		For standardising, can have $\sqrt{13.8}$ on denom not 13.8 ² For using tables correctly and finding a correct area from their z.
= 0.431	Al	3	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	AS Level & AICE Examinations – June 2002	9709, 0390	6

= 0.837 (exact)		4	For correct answer
(ii) $\mu = 100 \times 0.3 = 30$, $\sigma^2 = 100 \times 0.3 \times 0.7$ $P(X < 35) = \Phi\left(\frac{34.5 - 30}{\sqrt{21}}\right)$ $= \Phi(0.9820)$	B1 M1		For both mean and variance correct, allow $\sigma = 21$ For standardising with or without cc, allow their 21 or their $\sqrt{21}$ in denom For use of any continuity correction 34.5 or 35.5
(b) $P(X = 12) = (0.55)^{12} \times (0.45)^8 \times {}_{20}C_{12}$ = 0.162	M1 Al	2	For (their p) ¹² × (their q) ⁿ⁻¹² × $k \neq 1$ For correct answer
7 (i) (a) $np = 11$ np(1 - p) = 4.95 n = 20 (p = 0.55)	BI BI MI Al	4	For solving, need to find a value for n For correct answer
OR 1 - $(0.3446)^4$ - $(0.6554)^1$ × $(0.3446)^3$ × $_4$ C ₃ (=1 - 0.0141 - 0.1072) = 0.879	M1 B! Al Al	4	For calculation of i - any 2 or 3 of P(0), P(1), P(2) For correct numerical expression for P(1) or P(2) All in correct form For correct answer
(ii) $(0.6554)^2 \times (0.3446)^2 \times {}_{4}C_2$ + $(0.6554)^3 \times (0.3446)^1 \times {}_{4}C_3$ + $(0.6554)^4$ = 0.879 (= $0.3061 + 0.3881 + 0.1845$)	MI BI AI AI		For attempted binomial calculation of any 2 or 3 of P(2), P(3), P(4), needs 0.6554 in For correct numerical expression for P(2) or P(3) All in correct form For correct answer
σ = 2	M1 A1	4	Solving the correct equation or with a second correct equation relating μ and σ For correct answer
$\frac{2.8 - their\mu}{\sigma} = -0.4$	мі		For equation relating μ or 3.6 and σ. Must be standardised, can have ±0.4
(ii) (i) μ = 3.6	Al Bl	3	For correct answer Stated or can be calculated later on
OR $6! + \frac{6!}{2!} + \frac{6!}{2!} = 1440$	Mi Al		For summing options for ending in 2, 6, 8 For correct options
(iii) 4/7 of 2520 = 1440	M2 Al		For 4/7 of their (i) For correct answer
	Al	3	For correct answer
(ii) $\frac{5!}{2!} \times 3! = 360$	B1 M1		For 5! or equivalent For multiplying by 3! or dividing by 2! or both
5 (i) $\frac{7!}{2!} = 2520$	MI A!	2	For dividing by 2 or 2! For correct answer