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1 Solve the inequality �2x − 5 � > 3 �2x + 1�. [4]

2 Using the substitution u = 3x, solve the equation 3x + 32x = 33x giving your answer correct to

3 significant figures. [5]

3 The angles 1 and & lie between 0Å and 180Å, and are such that

tan�1 − &� = 3 and tan1 + tan & = 1.

Find the possible values of 1 and &. [6]

4 The equation x3 − x2 − 6 = 0 has one real root, denoted by !.

(i) Find by calculation the pair of consecutive integers between which ! lies. [2]

(ii) Show that, if a sequence of values given by the iterative formula

xn+1
=

_P
xn +

6

xn

Q

converges, then it converges to !. [2]

(iii) Use this iterative formula to determine ! correct to 3 decimal places. Give the result of each

iteration to 5 decimal places. [3]

5 The equation of a curve is y = e−2x tan x, for 0 ≤ x < 1
2
0.

(i) Obtain an expression for
dy

dx
and show that it can be written in the form e−2x�a + b tan x�2, where

a and b are constants. [5]

(ii) Explain why the gradient of the curve is never negative. [1]

(iii) Find the value of x for which the gradient is least. [1]

6 The polynomial 8x3 + ax2 + bx − 1, where a and b are constants, is denoted by p�x�. It is given that

�x + 1� is a factor of p�x� and that when p�x� is divided by �2x + 1� the remainder is 1.

(i) Find the values of a and b. [5]

(ii) When a and b have these values, factorise p�x� completely. [3]
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7 The points A, B and C have position vectors, relative to the origin O, given by

−−→
OA =

`
1

2

0

a
,

−−→
OB =

`
3

0

1

a
and

−−→
OC =

`
1

1

4

a
.

The plane m is perpendicular to AB and contains the point C.

(i) Find a vector equation for the line passing through A and B. [2]

(ii) Obtain the equation of the plane m, giving your answer in the form ax + by + cÏ = d. [2]

(iii) The line through A and B intersects the plane m at the point N. Find the position vector of N

and show that CN =
��13�. [5]

8 The variables x and 1 satisfy the differential equation

dx

d1
= �x + 2� sin2 21,

and it is given that x = 0 when 1 = 0. Solve the differential equation and calculate the value of x when

1 = 1
4
0, giving your answer correct to 3 significant figures. [9]

9 The complex number 3 − i is denoted by u. Its complex conjugate is denoted by u*.

(i) On an Argand diagram with origin O, show the points A, B and C representing the complex

numbers u, u* and u* − u respectively. What type of quadrilateral is OABC? [4]

(ii) Showing your working and without using a calculator, express
u*

u
in the form x + iy, where x

and y are real. [3]

(iii) By considering the argument of
u*

u
, prove that

tan−1
�

3
4

�
= 2 tan−1

�
1
3

�
. �3�

10

x

y

O

M

R

1 p

The diagram shows the curve y =
x2

1 + x3
for x ≥ 0, and its maximum point M. The shaded region R

is enclosed by the curve, the x-axis and the lines x = 1 and x = p.

(i) Find the exact value of the x-coordinate of M. [4]

(ii) Calculate the value of p for which the area of R is equal to 1. Give your answer correct to

3 significant figures. [6]
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