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1 Use logarithms to solve the equation ex = 3x−2, giving your answer correct to 3 decimal places. [3]

2 (i) Use the trapezium rule with 3 intervals to estimate the value of

Ó
2
3
0

1
6
0

cosec x dx,

giving your answer correct to 2 decimal places. [3]

(ii) Using a sketch of the graph of y = cosec x, explain whether the trapezium rule gives an

overestimate or an underestimate of the true value of the integral in part (i). [2]

3 The polynomial ax3 + bx2 + x + 3, where a and b are constants, is denoted by p�x�. It is given that

�3x + 1� is a factor of p�x�, and that when p�x� is divided by �x − 2� the remainder is 21. Find the

values of a and b. [5]

4 The parametric equations of a curve are

x = 1

cos3 t
, y = tan3 t,

where 0 ≤ t < 1
2
0.

(i) Show that
dy

dx
= sin t. [4]

(ii) Hence show that the equation of the tangent to the curve at the point with parameter t is

y = x sin t − tan t. [3]

5 Throughout this question the use of a calculator is not permitted.

The complex numbers w and Ï satisfy the relation

w = Ï + i

iÏ + 2
.

(i) Given that Ï = 1 + i, find w, giving your answer in the form x + iy, where x and y are real. [4]

(ii) Given instead that w = Ï and the real part of Ï is negative, find Ï, giving your answer in the form

x + iy, where x and y are real. [4]
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6 It is given that Ó a

1

ln�2x�dx = 1, where a > 1.

(i) Show that a = 1
2

exp

@
1 + ln 2

a

A
, where exp�x� denotes ex. [6]

(ii) Use the iterative formula

an+1 = 1
2

exp

P
1 + ln 2

an

Q

to determine the value of a correct to 2 decimal places. Give the result of each iteration to

4 decimal places. [3]

7 In a certain country the government charges tax on each litre of petrol sold to motorists. The revenue

per year is R million dollars when the rate of tax is x dollars per litre. The variation of R with x is

modelled by the differential equation

dR

dx
= R

@
1

x
− 0.57

A
,

where R and x are taken to be continuous variables. When x = 0.5, R = 16.8.

(i) Solve the differential equation and obtain an expression for R in terms of x. [6]

(ii) This model predicts that R cannot exceed a certain amount. Find this maximum value of R. [3]

8 (i) By first expanding sin�21 + 1�, show that

sin 31 = 3 sin 1 − 4 sin31. �4�

(ii) Show that, after making the substitution x = 2 sin 1
ï3

, the equation x3 − x + 1
6
ï3 = 0 can be written

in the form sin 31 = 3
4
. [1]

(iii) Hence solve the equation

x3 − x + 1
6
ï3 = 0,

giving your answers correct to 3 significant figures. [4]

9 Let f�x� = x2 − 8x + 9

�1 − x��2 − x�2
.

(i) Express f�x� in partial fractions. [5]

(ii) Hence obtain the expansion of f�x� in ascending powers of x, up to and including the term in x2.

[5]

10 The line l has equation r = 4i − 9j + 9k + ,�−2i + j − 2k�. The point A has position vector 3i + 8j + 5k.

(i) Show that the length of the perpendicular from A to l is 15. [5]

(ii) The line l lies in the plane with equation ax + by − 3Ï + 1 = 0, where a and b are constants. Find

the values of a and b. [5]
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